

Chemo-informatics and
computational drug design

Prof. Dr. Hans De Winter

University of Antwerp

Campus Drie Eiken, Building A

Universiteitsplein 1, 2610 Wilrijk, Belgium

Page 7 of 126

Chapter 1. Introduction to Python

1. Introduction

Python is a general-purpose programming language that is very powerful yet also quite easy to learn, read and
write. Many applications in Python exist, ranging from web development to machine learning and data science.
Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. As Python
supports modules and packages, it can be used for a variety of applications. Simply by loading different modules,
the user can incorporate a wide variety of different and specific functions into its code base. Statistical,
mathematical and machine learning methods are introduced by importing modules such as scikit-learn and scipy,
while bioinformatics-approaches are largely governed by packages such as Biopython. Finally, plotting and data
visualisation has been made easy with Python packages like Matplotlib.

To work with molecules and drugs, there exist Python packages like RDKit and OpenBabel to help you with that.
In fact, as almost all molecule manipulations can be done with Python in combination with a package like RDKit, it
is important for the interested chemo-informatician to learn and use Python. For this reason, this course will start
with a short introduction on Python. In subsequent chapters, key concepts of the chemo-informatics package
RDKit will be introduced.

2. Installing Python

Python can be installed and run from almost every computer, be it a Mac, Windows or Linux machine. There are
even implementations of Python on the small Raspberry Pi systems, illustrating how widespread and powerful
Python really is.

Python comes in two main flavors, namely version 2 and version 3+. The former has been discontinued since the
beginning of 2020, so we will only focus on version 3+ (3.7, 3.8, and 3.9). In order to distinct between both flavors,
the name Python2 is often used to denote Python version 2, while the name Python3 referes to Python version
3+. In this course, we will refer to Python 3+ when talking about Python as such.

Installation of Python can be achieved in many ways, but probably the easiest ways are through means of the
Anaconda installer for a local installation of Python on your computer, or by using the Google Colab interface for
a web-based usage of Python without the need to install software on your system. In the following sections, both
approaches are illustrated.

2.1. Anaconda

Anaconda is a free, easy-to-install package manager, environment manager, and Python distribution with a
collection of many open source packages. Installation of Anaconda is first required, and subsequently many Python
packages can be installed in their own environments, making it safe to try-out different Python packages without
introducing the risc that packages might conflict and break already installed packages.

An extensive and well-writing installation manual is available from the Anaconda documentation portal. This
installation manual describes the required steps to take for insalling on Windows, macOS and Linux systems.

2.2. Google Colab

Perhaps the easiest way to learn Python is with the Google Colab application. This is a web-based application that
allows one to write and execute Python code in your own browser and with no installation or required
configuration settings. In order to use Google Colab for the first time, you can look at this nice tutorial and follow
the different steps.

Page 8 of 126

3. Python concepts

3.1. Importing modules

One of the powerful aspects of Python is its use of modules. With modules, the user can select what kind of
functionality is needed by importing the corresponding modules that contain the required functionalities. Python
modules are imported using the import statement:

>>> import math
>>> math.sqrt(25)
5.0
>>> math.sin(math.pi)
1.2246467991473532e-16

In this example, the math module is imported. This module contains many mathematical functions and constants
(such as math.pi).

It is also possible to import only specific functions from the module, as illustrated in the following example in which
only the sqrt function is loaded:

>>> from math import sqrt
>>> sqrt(25)
5.0
>>> math.sin(math.pi)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'math' is not defined

One may of course also import multiple functions at once:

>>> from math import sqrt, sin, pi
>>> sqrt(25)
5.0
>>> sin(pi)
1.2246467991473532e-16

Aliases (or synonyms) to the imported modules may be provided as desired:

>>> import math as mathematics
>>> mathematics.pi
3.141592653589793

To know which functions and constants are defined in the spcified module, one can use the dir() function:

>>> dir(math)
['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh',
'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e',
'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'remainder', 'sin', 'sinh',
'sqrt', 'tan', 'tanh', 'tau', 'trunc']

3.2. Basic operations

Basic operations in Python include addition, substraction, multiplication and division. The exact effect of each of
these operations depends on the underlying data type (see below), but in the case of numbers as data types the
results are as expected:

>>> 10 + 4
14
>>> 10 - 4
6
>>> 10 * 4
40
>>> 10 ** 4
10000

Page 9 of 126

>>> 10 / 4
2.5
>>> 5 % 4
1
>>> 10 // 4
2

Python works also with booleans, which are data types that can have the value of true or false. Boolean
operations include comparisons such as > (larger than), >= (larger or equal than), < (smaller than), <= (smaller or
equal than) and == (equal) or != (not equal). In addition, there exist also and, or and not as boolean operations.
All data types can automaticallly be converted to a boolean type:

>>> 5 > 3
True
>>> 5 < 3
False
>>> 5 != 3
True
>>> 5 >= 3 and 10 > 3
True
>>> 5 >= 3 and not 10 > 3
False
>>> True
True
>>> not False
True

3.3. Data types

Standard Python contains already a multitude of data types, and these can be extended by the programmer using
the class data type (below more on classes). The common data types in Python are integer numbers (int),
fractional numbers (float), booleans (bool), text (str) and the None type. The type can be determined with
the type() function:

>>> type(2)
<class 'int'>
>>> type(2.4)
<class 'float'>
>>> type(“two”)
<class 'str'>
>>> type(‘two’)
<class 'str'>
>>> type(True)
<class 'bool'>
>>> type(None)
<class 'NoneType'>

In order to find out if a given object is of a given type, the isinstance() function is useful:

>>> isinstance(2.0, int)
False
>>> isinstance(2, int)
True
>>> isinstance(2, float)
False
>>> isinstance(2.0, float)
True
>>> isinstance(2.0, (float, int))
True

Objects often can be converted to other types (not always, as shown in the last example):

>>> int(2.1)
2
>>> float(2)
2.0
>>> str(2.9)
‘2.9’
>>> int(“two”)

Page 10 of 126

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'two'

With respect to conversion to a boolean type, 0, None and empty containers (see below) are all converted to
False, and all the other objects are converted to True:

>>> bool(0)
False
>>> bool(0.00000001)
True
>>> bool(None)
False
>>> bool(“”)
False
>>> bool(1)
True

3.4. Variables

Variables in Python are placeholders that can contain certain values. These values are assigned to the variables:

>>> a = 3
>>> a
3
>>> b = 7
>>> a + b
10
>>> b ** a
343
>>> b * 2
14
>>> c = a + b
>>> c
10
>>> a = 1
>>> a = 2
>>> a = 3
>>> a
3
>>> a = “another value into a”
>>> a
'another value into a'

3.5. Lists

As the name suggests, lists are lists of ordered and multiple data types. Lists are denoted with [], in which [
denotes the start of the list, and] the end. Elements can be added to the list using the append() method:

>>> my_list = []
>>> my_list
[]
>>> my_list.append(3)
>>> my_list
[3]
>>> my_list.append(4)
>>> my_list
[3, 4]
>>> another_list = ["This", "are", "five", "list", "elements"]
>>> another_list
['This', 'are', 'five', 'list', 'elements']

List elements can be accessed with their index (starting at zero). The last element can be accessed with the -1
index and the total number of elements is retrieved with the len() function:

>>> another_list[0]
'This'
>>> another_list[2]
'five'

Page 11 of 126

>>> another_list[-1]
'elements'
>>> len(another_list)
5

Individual elements can be removed from a list using the remove() and pop() methods:

>>> another_list.remove(‘list’)
>>> another_list
['This', 'are', 'five', 'elements']
>>> another_list.pop(1)
'are'
>>> another_list
['This', 'five', 'elements']

Lists can be sorted:

>>> another_list.sort()
>>> another_list
['This', 'elements', 'five']

There are many more functions and methods that can be used in conjunction with lists. For the interested student,
please have a look at the W3 Schools webpage on lists.

3.6. Tuples

Tuples are like lists, but tuples cannot be modified with methods like append() or remove(). Tuples are
initiated and remain then constant:

>>> digits = (1,2,3)
>>> digits
(1, 2, 3)
>>> digits[1]
2
>>> len(digits)
3
>>> digits * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
>>> digits.append(4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'

3.7. Strings

Strings are sequences of characters. They share some similarities with lists such as accessing elements with indices
and the len() method:

>>> txt = “this is a string”
>>> txt[1]
'h'
>>> txt[1:4]
'his'
>>> len(txt)
16

In addition, strings also possess some methods that are typical for text:

>>> txt2 = txt.upper()
>>> txt2
'THIS IS A STRING'
>>> txt2.lower()
'this is a string'
>>> txt.split()
['this', 'is', 'a', 'string']

The W3 Schools webpage on strings provides examples of many other methods related to strings.

Page 12 of 126

3.8. Dictionaries

Dictionaries are structures which can contain multiple data types which are ordered as key-value pairs. For each
(unique) key, the dictionary contains an associated value. Keys can be strings, numbers, or tuples, while the
corresponding values can be any Python object:

>>> d = {}
>>> d
{}
>>> d = dict()
>>> d = {1: "one", "two": 2, 3: [1,2,3,4], "four": None}
{1: 'one', 'two': 2, 3: [1, 2, 3, 4], 'four': None}

The dictionary elements can be accessed as key/value pairs:

>>> d[1]
'one'
>>> d[105] = “OneHundredAndFive”
>>> d
{1: 'one', 'two': 2, 3: [1, 2, 3, 4], 'four': None, 105: 'OneHundredAndFive'}
>>> d[105] = None
>>> d
{1: 'one', 'two': 2, 3: [1, 2, 3, 4], 'four': None, 105: None}

As already shown in the previous example, dictionary elements can be added by providing the key/value pair using
square brackets. Deletion of dictionary elements is possible with the del() function:

>>> del d[105]
>>> d
{1: 'one', 'two': 2, 3: [1, 2, 3, 4], 'four': None}

For more information, see the W3 Schools webpage on dictionaries.

3.9. Sets

Sets are containers very similar to dictionaries, but sets have only the unique keys and no values. Sets can be used
to generate lists of unique elements:

>>> l = set()
>>> l.add(1)
>>> l.add(2)
>>> l.add(3)
>>> l.add(3)
>>> l.add(3)
>>> l
{1, 2, 3}
>>> l.remove(3)
>>> l
{1, 2}

For more information, see the W3 Schools webpage on sets.

3.10. Control statements

Conditional statements

Conditional statements (if, else, and elif) control the flow of a program depending on the outcome of certain
conditions. These conditions are evaluated and depending on the outcome (True or False) a certain flow
direction is followed:

>>> x = 3
>>> if x == 3:
... print(“Three”)
... elif x == 4:
... print(“Four”)
... else:

Page 13 of 126

... print(“Not 3 and not 4”)

...
Three

Loops

Repetitive processes are implemented using loops. There are two kinds of loops, namely the for loop and the
while loop. Let’s start with the for loop to illustrate how one can iterate over all elements in a list:

>>> fruits = ["apple", "lemon", "strawberry"]
>>> for fruit in fruits:
... print(fruit)
... print(fruit.upper())
...
apple
APPLE
lemon
LEMON
strawberry
STRAWBERRY

The range() keyboard may come in handy in this context. With this keyword, a range of numbers is generated.
For example, range(10), which is equal to range(0,10), returns a list of 10 integers ranging from 0 to 9
inclusive:

>>> for i in range(10):
... print(i)
...
0
1
2
3
4
5
6
7
8
9

This feature may be exploited to loop over a list using list indices:

>>> for i in range(len(fruits)):
... print(i, fruits[i])
...
0 apple
1 lemon
2 strawberry

The second keyword for looping is while. This keywords evaluates the expression given as argument, and as long
as this experession converts to True, the block contained by the while keyword is executed:

>>> i = 1
>>> while i <= 4:
... print(i)
... i += 1
...
1
2
3
4

Breaks and continuation

To interrupt a loop, the break keyword may be used:

>>> for i in range(5):
... print(i)
... if i == 3:

Page 14 of 126

... break

...
0
1
2
3

When the break keyword is encountered, the loop terminates and the program flow moves out of the current
loop. This is comparable to the continue keyword, however in that case the program continues at the beginning
of the current loop:

>>> for i in range(5):
... if i == 1 or i == 3:
... print(i)
... else:
... continue
...
1
3

3.11. Functions

Functions are sets of instructions grouped together. Functions are launched when called, and they can have
multiple input values (called the arguments) and a single return value. Functions come in handy when the same
set of instructions has to be repeated on different vaiables or values. They are defined using the def() keyword:

>>> def sum(x,y):
... s = x + y
... return s
...
>>> sum(2,3)
5
>>> sum(100,4)
104

In the preceding example, a sum() function is defined that takes two arguments and returns a single value. It is
also possible to define default values for the input arguments:

>>> def sum(x=1,y=2):
... s = x + y
... return(s)
...
>>> sum()
3
>>> sum(4,5)
9

Functions are defined and used extensively in Python, and form the basis of many packages that may be imported
in your Python code. For example, the math.sqrt() that was mentioned on page 8 is actually a function that
takes a single argument and returns the square root of that argument.

Although a function can only return a single value by definition, it is possible to circumvent this limitation by
returning a tuple, list or dictionary:

>>> def sum_substraction_multiplication(a, b):
... return(a+b, a-b, a*b)
...
>>> a = sum_substraction_multiplication(2,3)
>>> a
(5, -1, 6)
>>> print("2 + 3 = ", a[0])
2 + 3 = 5
>>> print("2 - 3 = ", a[1])
2 - 3 = -1
>>> print("2 * 3 = ", a[2])
2 * 3 = 6

Page 15 of 126

3.12. Reading and writing files

Writing to text files is achieved using a three-steps procedure: 1) open the file, 2) write to the file, 3) close the file:

>>> f = open("test.txt", "w") # 'w': write to the file
>>> f.write("Hello\n")
6
>>> f.write("Line 2\n")
7
>>> f.write("\n")
1
>>> f.write("\n")
1
>>> f.write("\n")
1
>>> f.write("Last line\n")
10
>>> f.close()

This code generates a new file with filename test.txt. Should the text.txt file already exists, then this
existing file is overwritten by the new data. This file contains six lines:

Hello

Line 2

Last line

Reading a file is also done in three steps: opening, reading, and closing:

>>> f = open("test.txt", "r") # 'r': open the file to read
>>> for line in f.readlines():
... print(line)
...
Hello

Line 2

Last line

>>> f.close()

It is common practice to remove any newline characters at the end of each line [using the strip() method],
and to skip over empty lines:

>>> f = open("test.txt", "r") # 'r': open the file to read
>>> for line in f.readlines():
... line = line.strip()
... if line is None or line == "": continue
... print(line)
...
Hello
Line 2
Last line
>>> f.close()

Page 16 of 126

3.13. Further reading

Python is a rich scripting language with many more functions and options than can ever be covered in this short
chapter. Google is a perfect source of information to search for Python functions that you might need (for
example, “how to read in text files in python”). In addition, there exist many tutorial sites on the internet, such as
W3 Schools for Python.

