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Chapter 4. Fingerprints, molecular similarity and clustering 

1. Molecular fingerprints 

In order for computers to handle, search and compare molecules, it is necessary that these molecules are 
represented in a computer-readable form. Molecular fingerprints are a way of encoding the structure of a 
molecule, and which involve turning the molecule into a sequence of bits that can then be easily compared 
between molecules. There are several types of molecular fingerprints depending on the method by which the 
molecular representation is transformed into a bit string. Most methods use only the 2D molecular graphs (the 
topology) and are thus called 2D fingerprints. The best known of these 2D fingerprints are the Daylight, Morgan 
and MACCS fingerprints. 

1.1. Linear path-based: Daylight fingerprints 

The Daylight fingerprints were originally developed by Daylight Chemical Information Systems, Inc., a US-based 
company founded in 1987 by the Weininger brothers (http://www.daylight.com/about/index.html). Their 
fingerprint technology is categorised as topological or path-based fingerprints, and work by analysing all the 
fragments of the molecule following a linear path up to a certain number of bonds, and then hashing every one of 
these paths to create the fingerprint (Figure 17). The Daylight fingerprints consist of up to 2,048 bits and encode 
all possible connectivity pathways through a molecule up to a given length (mostly 7 atoms). Most software 
packages implement these fingerprints or fingerprints based on them. 

 

Figure 17. A representation of a hypothetical 10-bit topological fingerprint (a real Daylight fingerprint consists of 2,048 bits), 
in this case a linear path-based fingerprint with fragments up to a length of 5 (in the Daylight implementation this is normally 
a length of 7 atoms). All fragments found from the starting atom (circled) are shown, and the fragment length and 
corresponding bit in the fingerprint are indicated. There is one-bit collision, which are bits that are set by more than one 
fragment; these are likely in fingerprints with a reduced number of bits. Only fragments and bits for a single starting atom are 
shown; for the full fingerprint, this process would be carried out for every atom in the molecule. Adapted from reference 4. 
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1.2. Circular path-based: Morgan fingerprints 

Circular fingerprints are also hashed topological fingerprints, but they are different in that instead of looking for 
paths in the molecule, the environment of each atom up to a determined radius is recorded. They are widely used 
for full structure similarity searching. The Morgan fingerprints are also called ECFP fingerprints (Extended-
Connectivity Fingerprint). They represent circular atom neighbourhoods and produce fingerprints of variable 
length. They are most commonly used with a diameter of 4 and referred to as ECFP4. A diameter of 6 (ECFP6) is 
also commonly used. 

ECFPs have two typical representations (Figure 18): 

• List of integer identifiers. The natural and accurate representation of ECFPs is by means of varying-length 
lists of integer identifiers. Each identifier represents a particular substructure, more precisely, a circular 
atom neighbourhood, which is present in the molecule. The list of integer identifiers is sorted in 
ascending order. These identifiers can also be interpreted as indexes of bits in a huge virtual bit string. 
Each position in this bit string accounts for the presence or absence of a specific substructure feature. 
Since this virtual bit string is extremely large and sparse, it is not stored explicitly, but the indexes of the 
1 bits are recorded in a varying-length list. In spite of this interpretation, the feature identifiers are stored 
as signed values due to technical reasons, that is, they can be either positive or negative. By default, this 
integer list representation contains only one instance of each identifier. However, in particular 
applications, it could be beneficial to consider the frequency count of the ECFP features, that is, to record 
each identifier as many times as the represented feature occurs in the molecule. This variation of ECFP is 
often denoted as ECFC. 

• Fixed-length bit string. Traditional representation of binary molecular fingerprints is by means of fixed-
length bit strings. This representation can also be applied to ECFPs by "folding" the underlying virtual bit 
string into a much shorter bit string of specified length (for example 1,024). Compared to the identifier 
lists, this representation simplifies the comparison and similarity calculation of ECFPs and it could reduce 
the required storage space, especially for large molecules. On the other hand, the applied folding 
operation increases the likelihood of collision, that is, two (or more) different substructure features could 
be represented by the same bit position. As a result, a certain amount of information is usually lost, which 
worsens both the quality and interpretability of this representation. 
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Figure 18. Upper part: ECFP generation process. Lower part: generation of the fixed-length bit string by ‘folding’. 

1.3. Substructure-based: MACCS keys 

Substructure keys-based fingerprints set the bits of the bit string depending on the presence in the compound of 
certain substructures or features from a given list of structural keys. This usually means that these fingerprints are 
most useful when used with molecules that are likely to be mostly covered by the given structural keys, but not 
so much when the molecules are unlikely to contain the structural keys, as their features would not be 
represented. Their number of bits is determined by the number of structural keys, and each bit relates to presence 
or absence of a single given feature in the molecule (Figure 19), which is not the case with path-based fingerprints. 

The MACCS-key comes in two variants, one with 960 and the other with 166 structural keys based on substructure 
patterns. The shorter one is the most commonly used, as it is relatively small in length but covers most of the 
interesting chemical features for drug discovery and virtual screening. The larger variant contains proprietary 
substructures and cannot be processed by all software packages. 

 

Figure 19. A representation of a hypothetical 10-bit substructure fingerprint, with three bits set because the substructures 
they represent are present in the molecule (circled). Adapted from reference 4. 
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2. Similarity metrics 

Quantifying the similarity of two molecules is a key concept and a routine task in cheminformatics. Its applications 
encompass a number of fields, mostly medicinal chemistry-related, such as virtual screening. A virtually infinite 
number of methods have been described to calculate similarity and dissimilarity, but the Tanimoto index and 
Euclidean distance metrics being the most widely used. 

2.1. Tanimoto 

The Tanimoto similarity metric is commonly used in conjunction with bitwise fingerprints, such as the linear hash-
based Daylight and the fixed-length Morgan fingerprints. Represented as a mathematical equation: 

𝑇(𝑎, 𝑏) =
𝑁!

𝑁" +𝑁# −𝑁!
 

with Na and Nb representing the number of bits set (state 1) in fingerprints a and b, respectively, and Nc the number 
of common bits set. The Tanimoto distance runs from 0 to 1. 

 

Figure 20. Illustration of the Tanimoto index on a hypothetical example of two bit strings of 8 bits each. T(a,b) = 3 / (4 + 5 – 3) 
= 0.5. Perfect similarity results in an index of 1, while perfect dissimilarity results in an index of 0. 

2.2. Tversky 

The Tversky similarity measure is an asymmetrical metric, meaning that the resulting value depends on the order 
of the two fingerprints: 

𝑇(𝑎, 𝑏) =
𝑁!

𝛼𝑂" + 𝛽𝑂# +𝑁!
 

with Oa and Ob being the number of bits that are only set (state 1) in the fingerprints of a and b, respectively. Nc is 
defined as above. The factors a and b are weighing factors that can be used to put more weight on the fingerprints 
a and b, respectively. Setting the parameters a = b = 1.0 is identical to using the Tanimoto measure. The Tversky 
metric runs from 0 to 1, with 0 indicating total dissimilarity and 1 indicating equality. 

 

Figure 21. Illustration of the Tversky index on a hypothetical example of two bit strings of 8 bits each. With a = 0.9 and b = 
0.1, T(a,b) = 3 / (0.9 * 1 + 0.1 * 2 + 3) = 0.73. However, with a = 0.1 and b = 0.9, T(a,b) = 3 / (0.1 * 1 + 0.9 * 2 + 3) = 0.61. 
Perfect similarity results in an index of 1, while perfect dissimilarity results in an index of 0. 
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The actual choice of the a and b values depends on the research question one wants to answer. If fingerprint a is 
the fingerprint of a query molecule, and b is the fingerprint of a molecule in a database in which one wants to look 
for molecules that are similar to a, then setting a to a large value (e.g. 0.9) will give large values of T(a,b) for 
database molecules that are superstructures of the query a, while setting a to a small value (e.g. 0.1) will give 
large values of T(a,b) for database molecules that are rather substructures of a. 

2.3. Application of similarity metrics 

Similarity or distance measures have been used widely to calculate the similarity or dissimilarity between two 
samples of dataset. Cheminformatics is known as the domain that dealing with chemical information and both 
similarity and distance coefficient have been an important role for matching, searching and classification of 
chemical information. Similarity metrics are applied in a number of tasks: 

• Selection of a set of diverse compounds for in vitro screening. In case one wants to purchase a small 
subset of chemical compounds from a large database of potential structure, it is often advisable to select 
a small but diverse subset of these structures in order to increase the likelihood of identifying a potential 
hit compound that is active against the in vitro screen one is investigating. Diversity-based selection is 
often performed by means of compound clustering, an approach that is further described in section 3.  

• Selection of a set of similar compounds for hit conformation and the development of quantitative 
structure-activity relationships (QSAR). The chemical similarity principle, which states that compounds 
with similar structure will probably have similar bioactivities, is an underlying assumption of similarity-
based virtual screening. 

• Development of machine learning models in QSAR. Machine learning techniques can be broadly classified 
as supervised or unsupervised learning. 
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Figure 22. Overview of the process that is commonly used in pharmaceutical drug discovery. Compound databases are 
converted in chemical fingerprints, which are in turn used to search for similar compounds or for QSAR model building. 

3. Maximum common substructure 

The maximum common substructure (MCSS) is the largest substructure (graph) which can be identified between 
two or more molecules.  

To illustrate the MCSS concept, consider the example in Figure 23. In this example, the MCSS between morphine, 
codeine and heroine is shown in red.  
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Figure 23. The maximum common substructure (red) between morphine, codeine and heroine. RDKit was used to calculate 
this MCSS. 

The RDKit code to calculate the MCSS is rather straightforward but may take some time for complex molecule sets 
(normally in the order of microseconds, but it may go to minutes in some rare cases): 

from rdkit.Chem import rdFMCS 

 

morphine = Chem.MolFromSmiles("CN1CC[C@]23C4=C5C=CC(O)=C4O[C@H]2[C@H](C=C[C@H]3[C@H]1C5)O") 

codeine = Chem.MolFromSmiles("CN1CC[C@]23[C@@H]4[C@H]1CC5=C2C(O[C@H]3[C@@H](O)C=C4)=C(OC)C=C5") 

heroine = 

Chem.MolFromSmiles("CN([C@H](CC(C=C1)=C23)[C@@H]4C=C[C@@H]5OC(C)=O)CC[C@]43[C@H]5OC2=C1OC(C)=O") 

 

mols = [morphine, codeine, heroine] 

mcss = rdFMCS.FindMCS(mols) 

There exist many variations in the algorithms to calculate the MCSS of molecules, but the majority is based on 
some kind of backtracking approach in which an exhaustive search on all combinations is performed. Each 
molecule is converted into a graph representation (a graph is a set of edges [bonds] and nodes [atoms]) that is 
traversed iteratively to identify common edges and nodes. 

4. Clustering 

With the increase in the amount of chemical information available, methods that can organize chemical structures 
and their associated data are essential. Cluster analysis refers to a group of statistical methods that are used for 
identifying groups (‘clusters’) of similar items in multidimensional space. They require a measure of similarity 
between items, hence the Tanimoto or Euclidean distance measures are wide used for this. In cheminformatics, 
clustering methods are used for three main purposes: 

• Grouping compounds into chemical series (or something approximating to this), as a way of organizing 
large datasets. For example, it is easier for a chemist to browse through 500 clusters (where the 
molecules in a cluster are similar) than 50,000 arbitrarily ordered compounds 

• Identifying new bioactive molecules: if a compound with unknown activity is in a cluster that is biased 
towards compounds with known activity, we can make a prediction of the probability of activity of the 
unknown compound (for example, if 75% of the compounds in the cluster are active, we might say the 
probability of activity is 75%). 

• Picking representative subsets: if we cluster a set of compounds, we can then take one compound from 
each cluster as a ‘representative’ of this cluster, and the total set of representative compounds as a 
representative subset of the whole dataset. This is sometimes more useful than random selection. 

4.1. Hierarchical clustering 

Clustering methods can be either hierarchical or non-hierarchical. Hierarchical clustering creates a tree of clusters, 
with, at the bottom level, every item in its own cluster, and at the top level all items in one cluster. Algorithmically, 
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this can be done either by starting at the bottom and progressively merging clusters (agglomerative) or starting at 
the top and breaking up clusters (divisive). 

Mostly, the hierarchical agglomerative methods work in the same algorithmic fashion, but differ in the way that 
they decide which clusters to merge at each level. 

1) The Ward's method has been used widely in cheminformatics, and is distinguished by merging clusters which, 
when merged, have the smallest increase in variance from the mean (i.e. create the ‘tightest’ cluster when 
merged). 

2) Other methods include single linkage (the clusters are merged with the minimum distance between the nearest 
two points in each cluster); complete linkage (the clusters are merged with the minimum distance between the 
farthest points in each cluster); and group average (the minimum value of the mean distance between all pairs in 
the two clusters). Due to their computational complexity and memory requirements, hierarchical methods do not 
scale well to very large datasets, and thus they are giving way to faster, non-hierarchical methods. In order to 
create a partitioned grouping of a dataset (i.e. where every item is in one and only one cluster, or is a singleton), 
one must select a horizontal slice from this tree (Figure 24). 

In order to extract a partition from the hierarchy (i.e. a grouping of compounds where every compound is in one 
and only one cluster), we need to select a ‘level’ from this hierarchy. This can be done intuitively or by using some 
algorithms. 

 

Figure 24. Hierarchical clustering work by initially putting every item in a cluster by itself, at the bottom level (with n clusters, 
where n is the number of points). It then identifies the two clusters to merge (depending on the methods as described above) 
and merges them to form a new cluster at the next level. The next level up will therefore consist of one cluster with two points, 
and all the rest of the points in clusters by themselves (i.e. there will be n-1 clusters). The process repeats until there is just one 
cluster at the top containing all the points, resulting in a cluster hierarchy. 

4.2. Non-hierarchical clustering 

Non-hierarchical methods can use a variety of algorithms, but they generally all produce a single partitioning of 
the dataset into clusters (versus a tree which can result in many partitions). Some of the more common non-
hierarchical methods are Jarvis-Patrick, K-means and K-medoids. 

1) Jarvis-Patrick (JP) is a non-hierarchical method where, for each compound in a set, the j nearest neighbours 
(that is the j other compounds in the dataset that are the most similar) are identified. Two compounds cluster 
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together if they 1) are in each other’s list of j nearest neighbours, and 2) have kmin of their j nearest neighbours in 
common (Figure 25). This method doesn't require level selection, but does require j and kmin to be predefined. For 
example, one might choose a nearest neighbour list of size 20 (j) and put molecules in the same cluster if they 
share more than 10 nearest neighbours (kmin). Depending on the types of fingerprints used, Tanimoto is usually 
used as the measure of similarity. JP is fast, but has had mixed results in cheminformatics in terms of quality. 

 

Figure 25. Illustration of the Jarvis-Patrick algorithm. Each dot represents a molecule and the distance between the dots 
corresponds to the Tanimoto similarity between the compounds (larger distance, lower similarity). For each of the blue and 
red compounds, the j=8 nearest neighbors are shown using lines. The two compounds that are shared by both nearest 
neighbor lists are shown in orange. The blue and red compound would cluster together if kmin would be set to 1 or 2, but not 
if kmin > 2. 

2) K-means clustering is more widely used than JP. It requires that the number of desired clusters k be known in 
advance. The algorithm proceeds by alternating between these steps: 

• Assignment step: assign each observation to the cluster whose mean is nearest; 

• Update step: calculate the new cluster means to be the centroids of all molecules in the cluster. 

The algorithm has converged when the assignments no longer change, however there is no guarantee that the 
optimum is found using this algorithm and the result may depend on the initial clusters. Generally, only a few 
(<100, often <10) iterations are required to settle (Figure 26). 

The assignment of the initial k cluster centroids is normally done in a random fashion. However, alternative 
methods exist, such as the Random Partition method in which each molecule is initially assigned random to one 
of the k clusters, and then calculating the mean from each of the cluster’s randomly assigned points to get the 
initial cluster centres. A consequence of the Random Partition method is that the initial cluster centres are all close 
to the centre of the dataset (Figure 27). 

3) K-medoids is a derivative of K-means, but differs from K-means in that it uses real compounds, or ‘medoids’, to 
represent cluster centres, rather than centroids. 
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Figure 26. Illustrating the iterative process of the k-means clustering algorithm (in this case, k=3). The centroids of each cluster 
are shown as black dots. 

 

Figure 27. Initialization step of the k-means clustering method. The random selection method is nothing more than a random 
selection of k cluster centers from the dataset, while the ‘Random Partition’ method assigns each molecule initially random 
to one of the k clusters, and then calculating the mean from each of the cluster’s randomly assigned points to get the initial 
cluster centres. 

4.3. Self-organising maps (SOM) or Kohonen networks 

SOM’s are a type of artificial neural networks that are trained using unsupervised learning to produce a two-
dimensional and discretised representation of the input molecules. The artificial neural network introduced by the 
Finnish professor Kohonen in the 1980s and is therefore sometimes called a Kohonen map or network. Kohonen 
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maps can be used in conjunction with spectrophore fingerprints, which makes it an attractive method to cluster 
compounds based on their spectrophore similarities (Figure 28). 

 

Figure 28. Illustration of a SOM network consisting of 6 x 6 cells, each represented by a weight vector of size 4. Adapted from 
https://goo.gl/images/15mSAo . 

• Initialisation phase. The user needs to define the desired map size. In most cases, a grid of 10 by 10 cells 
is often sufficient, but other size may be tested as well. Each grid cell is composed of a vector of 48 values 
(the size of the spectrophore vector), and all values of these 100 vectors are initially assigned with 
random numbers. 

• Step 1. From the database of compounds that need to be clustered, an input molecule (spectrophore) is 
selected. 

• Step 2. The Euclidean distance between the input spectrophore and each of the 100 cells is calculated, 
after which the cell with the smallest distance is selected. 

• Step 3. The 48 values of the selected cell are updated according a user-defined update function. Many 
flavours exist for this function, but a good start is to use an average function (each of the values in the 
cell are assigned a new value which is nothing more than the average between the old value and the 
corresponding value of the input spectrophore). 

• Step 4. Stop if the maximum number of iterations has been reached, otherwise continue with step 1. 

5. Diversity analysis 

Diversity analysis gained popularity in the late 1990’s in response to the following needs in the pharmaceutical 
industry: 

• There was much interest as to how well the corporate collections of compounds held by pharmaceutical 
companies ‘covered’ possible chemistry/drug space (Figure 29). 

• Combinatorial chemistry experiments were producing many new compounds, and people wanted to 
know if these compounds added anything new (in terms of chemical or biological functionality) to their 
corporate collections, i.e. if they made the datasets more diverse, or just replicated what was already in 
there? 

• Libraries of thousands of compounds became available for purchase – are they worth the money? 
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Figure 29. Principal Component Analysis plots. Chemical diversity of the GSK, Novartis and St-Jude libraries displayed (panel 
A); Overlap in chemical diversity of the combined datasets and the commercially available compounds (panel B); Overlap in 
chemical diversity of the commercially available compounds where the drug-like and probe-like chemotypes were annotated 
(panel C). Adapted from reference 5. 




