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Molecular fingerprints have been used for a long time now in drug discovery and virtual screening. Their
ease of use (requiring little to no configuration) and the speed at which substructure and similarity
searches can be performed with them – paired with a virtual screening performance similar to other
more complex methods – is the reason for their popularity. However, there are many types of finger-
prints, each representing a different aspect of the molecule, which can greatly affect search performance.
This review focuses on commonly used fingerprint algorithms, their usage in virtual screening, and the
software packages and online tools that provide these algorithms.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Computational advances during the past two decades have
enabled the extensive use of virtual screening for drug discovery
[1]. Virtual screening is an in silico method that consists of screen-
ing large small-molecule databases for bioactive molecules. This
enables the researcher to avoid the cost of experimentally testing
hundreds or thousands of compounds by reducing the number of
candidate molecules to be tested to manageable numbers.

The screening can be conducted using several methods or their
combination, which can be classified as structure-based methods
(which are based on matching the compounds to a target binding
site, the most common of these approaches being protein–ligand
docking) or ligand-based methods (which involves retrieving those
compounds from the database that are similar in some ways to
known active molecules and vary greatly depending on the molec-
ular features taken into account for similarity assessment). The
main ligand-based approaches involve the use of pharmacophores
(abstractions of the features needed for the molecule to be active)
[2], shape-based similarity [3], fingerprint similarity, and also
machine learning using molecular properties and data from any
of the former approaches [4].
Fingerprint-based similarity searching is also used outside of
the virtual screening and drug discovery fields. One such example
is the application of the method to flavor chemistry [5].

2. Methods for molecular fingerprints

Similarity in itself is subjective and can be measured and their
results interpreted in several ways [6–8]. One of the most impor-
tant problems encountered when trying to measure the similarity
between two compounds is the complexity of the task, which
depends on the complexity of the molecular representation used.
In order to make the comparison between molecular representa-
tions computationally easier, some level of simplification or
abstraction is required. The most commonly used of these abstrac-
tions are molecular fingerprints, which involve turning the mole-
cule into a sequence of bits that can then be easily compared
between molecules.

This comparison must then be expressed in a way that can be
quantified. There are many ways to assess the similarity between
two vectors, the most common overall being Euclidean distance.
But for molecular fingerprints, the industry standard is the Tanim-
oto coefficient, which consists of the number of common bits set to
1 in both fingerprints divided by the total number of bits set to 1
between both fingerprints. This means that the Tanimoto coeffi-
cient will always have a value between 1 and 0, regardless of the
length of the fingerprint, which causes it to loose representativity
as the fingerprints become longer. This loss also means that how
similar two fingerprints with a given Tanimoto coefficient actually
will greatly depend on the type of fingerprint used, which makes it
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Table 1
Some similarity coefficients and distances used with fingerprints.

Measure Expression Range

Tanimoto/Jaccard coefficient c
aþb�c 0 to 1

Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ b� 2c
p

0 to N

City-block/Manhattan/Hamming distance aþ b� 2c 0 to N
Dice coefficient 2c

aþb
0 to 1

Cosine similarity c
ffiffiffiffi

ab
p 0 to 1

Russell–RAO coefficient c
m 0 to 1

Forbes coefficient cm
ab 0 to 1

Soergel distance aþb�2c
aþb�c

0 to 1

Where, given the fingerprints of two compounds, A and B, m equals the total
amount of bits present in the fingerprints, a equals the amount of bit set to 1 in A, b
equals the amount of bits set to 1 in B and c equals the amount of bits set to 1 in
both A and B.
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impossible to select a universal cutoff criterion for determining
whether two fingerprints are similar or dissimilar. However, the
performance of molecular fingerprints could be improved by com-
bining them with other similarity coefficients [9]. Several similar-
ity and distance metrics that have been used with fingerprints are
listed in Table 1.

2.1. Types of molecular fingerprint

There are several types of molecular fingerprints depending on
the method by which the molecular representation is transformed
into a bit string. Most methods use only the 2D molecular graph
and are thus called 2D fingerprints; however, some methods are
capable of storing 3D information, most notably pharmacophore
fingerprints. The main approaches are substructure keys-based fin-
gerprints, topological or path-based fingerprints, and circular
fingerprints.

� Substructure keys-based fingerprints set the bits of the bit
string depending on the presence in the compound of certain
substructures or features from a given list of structural keys.
This usually means that these fingerprints are most useful when
used with molecules that are likely to be mostly covered by the
given structural keys, but not so much when the molecules are
unlikely to contain the structural keys, as their features would
not be represented. Their number of bits is determined by the
number of structural keys, and each bit relates to presence or
absence of a single given feature in the molecule (Fig. 1), which
does not happen with other (hashed) types of fingerprints.
Some of the most commonly used substructure keys-based fin-
gerprints are:
o MACCS [10,11]: It comes in two variants, one with 960 and

the other with 166 structural keys based on SMARTS pat-
terns. The shorter one is the most commonly used, as it is rel-
atively small in length (only 166 bits) but covers most of the
Fig. 1. A representation of a hypothetical 10-bit substructure fingerprint, with
three bits set because the substructures they represent are present in the molecule
(circled).
interesting chemical features for drug discovery and virtual
screening. Additionally several software packages are able
to calculate it, which is not true for the longer version.

o PubChem fingerprint [12]: this fingerprint, with 881 struc-
tural keys covers a wide range of different substructures
and features. It is the fingerprint used by PubChem for sim-
ilarity searching and neighboring. Other than PubChem’s
own code, it is also implemented in ChemFP [13] (although
deemed ‘‘experimental’’) and in CDK [14,15].

o BCI fingerprints [16]: BCI fingerprints can be generated using
different numbers of bits and can be modified by the user in
several ways, but the standard substructure dictionary
includes 1052 keys [17]. BCI fingerprints are only available
in BCI toolkits.

o TGD [18] and TGT fingerprints: These are two-point and
three-point pharmacophoric fingerprints calculated from a
2D molecular graph, consisting, respectively of 735 and
13,824 bits. TGD encodes atom-pair descriptors using
seven-atom features and distances up to 15 bonds [17,18].
TGT encodes triplets of four-atom features using three graph
distances divided into six distance ranges [17]. They are both
available in MOE software package [19].

� Topological or path-based fingerprints work by analyzing all the
fragments of the molecule following a (usually linear) path up
to a certain number of bonds, and then hashing every one of
these paths to create the fingerprint (Fig. 2). This means that
any molecule can produce a meaningful fingerprint, and its
length can be adjusted. They can also be used for fast substruc-
ture searching and filtering. These are hashed fingerprints,
which means that a single bit cannot be traced back to a given
feature. A given bit may be set by more than one different fea-
ture, which is called ‘‘bit collision’’. The Daylight fingerprint
[20]: is the most prominent of these types of fingerprints. They
consist of up to 2048 bits and encode all possible connectivity
pathways through a molecule up to a given length. Most soft-
ware packages implement these fingerprints or fingerprints
based on them, which can sometimes reach higher number of
bits or use non-linear connectivity paths, such as OpenEye’s
Tree fingerprints [21].
Fig. 2. A representation of a hypothetical 10-bit topological fingerprint, in this case
a linear path-based fingerprint with fragments up to a length of 5. All fragments
found from the starting atom (circled) are shown, and the fragment length and
corresponding bit in the fingerprint are indicated. There are two bit collisions,
which are bits that are set by more than one fragment; these are likely in
fingerprints with a reduced number of bits. Only fragments and bits for a single
starting atom are shown; for the full fingerprint, this process would be carried out
for every atom in the molecule. Circular fingerprints use a similar approach, but
building fragments within a radius of the starting atom instead of linear fragments.
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� Circular fingerprints are also hashed topological fingerprints,
but they are different in that instead of looking for paths in
the molecule, the environment of each atom up to a determined
radius is recorded. They are therefore not suitable for substruc-
ture queries (as the same fragment may have different environ-
ments) but are widely used for full structure similarity
searching.
o Molprint2D [22,23]: Molprint2D encodes the atom environ-

ments of each atom of the molecular connectivity table,
which are represented by strings of varying size. This finger-
print is available in several software packages, such as Open
Babel [24] and jCompoundMapper [25].

o ECFP: The de facto standard circular fingerprints are the
Extended-Connectivity Fingerprints (ECFPs), based on the
Morgan algorithm [26], which were specifically designed
for their use in structure–activity modeling [27]. They repre-
sent circular atom neighborhoods and produce fingerprints
of variable length. They are most commonly used with a
diameter of 4 and referred to as ECFP4. A diameter of 6
(ECFP6) is also commonly used, although some benchmarks
have shown small performance differences between the
two [28]. Additionally, there is a variation that keeps track
of the frequency counts of the ECFP features, recording each
identifier as many times as it appears in the molecule instead
of only once. This variation is often denoted as ECFC. Notable
software programs that provide these fingerprints are Pipe-
line Pilot [29], Chemaxon’s JChem [30], the CDK [14] and
the RDKit [31] (referred to as ‘‘Morgan fingerprints’’).

o FCFP (Functional-Class Fingerprints): FCFP are a variation of
ECFP, which are further abstracted in that instead of indexing
a particular atom in the environment, they index that atom’s
role. So, different atoms or groups with the same or similar
function are not distinguished by the fingerprint. This
enables them to be used as pharmacophoric fingerprints.
There is also a FCFC variation, akin to the ECFC variation to
the ECFP. All major software packages supporting ECFP fin-
gerprints also support these variations.

� There are also some hybrid fingerprints that combine the same
bits string bits set using different approaches. Some commonly
used fingerprints that fall into this category are the following:
o UNITY 2D [32]: This is a 988-bit long fingerprint based both

on structural keys and connectivity path fragments.
o MP-MFP [33]: MP-MFP is a 171-bit fingerprint with 110 bits

set from structural keys and 61 bits set from property
descriptors.

� Pharmacophore fingerprints are also commonly used. A phar-
macophore represents the relevant features and interactions
needed for a molecule to be active against a given target. Phar-
macophoric fingerprints usually encode the information for the
features from a list that a molecule presents, in a manner sim-
ilar to substructure-key based fingerprints, but taking into
account the distance between these features, usually classifying
it using a list of distance ranges. In this way, 3D information can
be encoded into the fingerprint [34].
� Lastly, there are also other types of fingerprints that try totally

different approaches. For example, LINGO [35] and SMIfp [36]
are fingerprints that are text-based and are calculated based
on the canonical SMILES [37] of the molecule. Protein–ligand
interaction fingerprints (PLIF), as their name suggests, encode
information about protein–ligand interactions, such as hydro-
gen bonds, ionic interactions and surface contacts with their
residue of origin [19]. Structural Interaction Fingerprint (SIFt)
is also one of these fingerprints [38].

In general, fingerprints with longer bit strings have been found
to perform better during similarity searching, because they contain
an increased amount of stored information (due to a reduction of
bit collision for hashed fingerprints) [39].
2.2. Software for fingerprint-based virtual screening

There are many software packages that can be used for finger-
print-based virtual screening, from whole drug discovery suites
including fingerprint functionality to software libraries or tools
centered specifically in dealing with fingerprints and similarity
searching. Each software package supports a different set of finger-
prints, and most of them implement fingerprints not present in any
other package. However, the most commonly used fingerprinting
algorithms can be found in most software packages. Here is a list
of the main software packages used when doing ligand-based vir-
tual screening with fingerprint similarity, in no specific order:

� OEChem TK: This OpenEye toolkit [21] is able to produce 166-
bit MACCS, LINGO, Circular, Path (Daylight-like) and Tree (Day-
light-like with non-linear, ‘‘tree’’ fragments) fingerprints. It has
interfaces to C++, Java, Python, and C#.
� JChem from ChemAxon [30]: This is a java library that provides

access to several hashed fingerprints, ECFP fingerprints with all
their variants (ECFC, FCFP, FCFC), and pharmacophoric finger-
prints. ChemAxon also provides packages for .NET and is usable
in Python through cinfony [40].
� Open Babel [24,41]: This is a free and open-source cheminfor-

matics toolkit, which implements MOLPRINT2D, 166-bit MAC-
CS, a Daylight-like fingerprint (FP2), and 2 structural key
fingerprints with 55 (FP3) and 307 bits. It can be used from
C++, Java, Python, C#, and Perl.
� RDKit [31]: This is also a free and open-source cheminformatics

toolkit that provides access to several fingerprints: 166-bit
MACCS, ‘‘Topological’’ (Daylight-like), ‘‘Atom pairs’’ (based on
the atomic environments and shortest path separations of every
atom pair in the molecule [42]),‘‘Morgan’’ (ECFP and its varia-
tions), ‘‘Torsion’’ (based on the topological torsion descriptor
[43]), and ‘‘Layered’’ (an experimental topological fingerprint
intended to make fingerprinting queries more straightforward).
It is usable from C++, Python, Java, and C#.
� CDK [14,15,44]: This is another free and open-source toolkit,

which features several fingerprints, the most notable being
ECFP, LINGO, Daylight-like fingerprint, 166-MACCS, PubChem,
and other structural keys fingerprints such as E-State [45] and
Klekota–Roth [46]. It is a Java library but can be used in regular
Python through cinfony [40].
� Indigo [47]: This is another free and open-source cheminfor-

matics toolkit that offers several hashed fingerprints and their
combination. It can be used from C++, Java, Python and C#.
� Cinfony [40,48] This is not a toolkit in itself and does not imple-

ment any fingerprint, but it gives the user access to several tool-
kits (Open Babel, RDKit, CDK, JChem, and Indigo) through a
common API in Python and to some extent in Jython (JVM)
and IronPython (.NET).
� ChemFP [13] This is a tool that can be used as a back-end data-

base with either Open Babel, RDKit or OEChem, thus supporting
most of their fingerprints, and implementing on top of that a
166-bit MACCS and a PubChem-like fingerprint. But what is
special about Chemfp is its ability to store the fingerprints in
a standard file format (FPS) and then to perform high-speed
Tanimoto similarity searches. It provides a Python library and
command-line tools.
� Canvas from Schrödinger offers MACCS, customizable SMARTS-

based keys fingerprints, and seven types of hashed fingerprints,
including MOLPRINT2D, ECFP, and linear (Daylight-like), as well
as fingerprints derived from pharmacophore models [39,49,50]
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� Molecular Operating Environment (MOE) implements 2 (TGD),
3 (TGT), and 4-point pharmacophore fingerprints in 2D/3D,
MACCS keys, and EigenSpectrum shape fingerprints among oth-
ers [19].
� jCompoundMapper [25,51]: This is an open-source command-

line tool and a library for chemical fingerprints, featuring sup-
port for many fingerprint types, including MOLPRINT2D, atom
pairs, and pharmacophore fingerprints among others. It also
provides several machine learning tools and uses CDK.
� Pipeline Pilot from Accelrys [29]: This is an authoring tool with

a visual and dataflow authoring language. It can calculate a
wide variety of fingerprints, including both MACCS versions,
ECFP, and its variants.
� SYBYL-X Suite from Tripos [32]: this is a molecular modeling

suite that includes the UNITY 2D fingerprints for similarity
searches.
� DecoyFinder [52,53]: DecoyFinder is a graphical tool that helps

find decoy sets for virtual screening validation. It uses MACCS
fingerprints and molecular descriptors to find the decoy
molecules.
� FLAP [54] (Fingerprints for Ligands and Proteins): FLAP is a tool

that provides a common reference framework for comparing
molecules using GRID Molecular Interaction Fields (MIFs). The
fingerprints are characterized by quadruplets of pharmaco-
phoric features and can be used for ligand–ligand, ligand–recep-
tor, and receptor–receptor comparison.
� MayaChemTools is a free collection of Perl scripts, modules and

classes that support day-to-day computational discovery needs
[55] The collection of scripts can compute several molecular fin-
gerprints, including ECFP, MACCS, path-based fingerprints and
many others; it can also be used directly for similarity searching
with fingerprints.

2.3. Online tools for fingerprint-based virtual screening

In comparison to the large number of software packages offer-
ing fingerprint functionality, the number of online services doing
so is far lower, mostly consisting of databases that include a simi-
larity searching option using some fingerprint. A brief enumeration
of the most interesting services is as follows:

� PubChem [56] provides a fast chemical structure similarity
search tool. Any small molecule may be used as query, and a
Tanimoto coefficient threshold can be chosen above which mol-
ecules will be deemed similar enough. The fingerprint used for
this similarity searches is the PubChem fingerprint [12].
� ChemSpider [57–59] also supports similarity searching with

Tanimoto (and other metrics) thresholds. It uses a fingerprint
calculated by GGA’s BINGO database cartridge, which uses the
Indigo toolkit [49].
� The ZINC database [60–62] also supports similarity search. The

fingerprint used is the path-based ChemAxon fingerprint from
JChem [30,61]. It uses the same fingerprint for the generation
of clusters with molecules of up to a given similarity cutoff,
which produces clusters with guaranteed molecular diversity
and chemical space coverage.
� The Multi-Fingerprint Browser for ZINC [63,64] is a tool that

enables rapid identification of close analogs among commer-
cially available compounds in the ZINC database [60]. The
browser retrieves nearest neighbors in multi-dimensional
chemical spaces defined by four different fingerprints (finger-
print = a vector composed of several numerical descriptors of
molecular structure and properties), each of which represents
relevant structural and pharmacophoric features in a different
way: sFP (substructure fingerprint), ECFP4 (Extended connec-
tivity fingerprint), MQN (Molecular Quantum Numbers), and
SMIfp (SMILES fingerprint). Distances are calculated using the
city-block distance (CBD; see Table 1), a similarity measure
which, according to Awale et al. [63], performs as well as Tan-
imoto similarity.

3. Usual fingerprint-based virtual screening scenarios

To conduct a virtual screening based on fingerprint similarity,
the following things are needed:

� At least one known active molecule, which will be the reference
molecule(s).
� A molecular database with potential actives.
� Software capable of generating and comparing fingerprints.

Once the reference molecules are chosen, the next step would
be to choose the most appropriate fingerprint. The choice is usually
limited by the available options in the software being used. The
most appropriate option would also depend mostly on the refer-
ence molecules, as a fingerprint should be able to properly repre-
sent the reference molecules (which is generally not a concern
for hashed fingerprints). Whether the database and the available
fingerprints account for stereochemistry, tautomeric forms, and
the conformations of both the reference molecules and the mole-
cules in the database to be screened should also be taken into
account. Stereochemistry-sensitive methods should be used pref-
erably to screen stereochemistry-sensitive databases. The presence
of conformations enables the use of fingerprints that depend on
them [34]. Tautomerism of the studied molecules should also be
taken into account, as different tautomers of the same molecule
could have substantially different fingerprints.

With the chosen algorithm, fingerprints would be calculated for
every molecule and reference in the database, and then the similar-
ity coefficient is calculated between the reference molecule and
every other molecule. After this, the molecules can be ranked in
descending order using the similarity coefficient. The top mole-
cules of the rank would be expected to exhibit a similar activity
as the reference molecule.
4. Comparing fingerprint similarity search with other virtual
screening methods

In a comparison by Tresadern et al. [65] ECFP6 fingerprints were
compared to several other virtual screening methods: feature trees,
topomers, ROCS shape Tanimoto, EON electrostatic Tanimoto,
OpenEye ComboScore (a combination of shape Tanimoto and
color-score), and Cresset-Fieldscreen. All of these, other than those
that feature trees, are 3D methods and require substantially more
computation time than fingerprints. The results were as expected:
the ECFP6 fingerprint was the weakest performing method with 3
out of the 4 queries, although it exhibited one of the highest perfor-
mances with the remaining query. However, the 3 queries, where
the fingerprint was outperformed, all showed very similar perfor-
mances for all the methods, which may imply that the performance
of the methods depends on the selected queries.

In a different comparison, by McGaughey et al. [66], the Day-
light fingerprint was put to test against many other virtual screen-
ing methods, including protein–ligand docking. The Daylight
fingerprint outperformed most of the other methods. The authors
conclude that ‘‘as measured by EF, the 2D similarity methods
(TOPOSIM, Daylight) perform well at lead-hopping when applied
to a diverse database. [. . .] One may ask how it is possible for 2D
similarity methods to perform nearly as well as 3D methods at lead
hopping.’’ They also noted how sensitive the performance is in
Daylight fingerprints regarding path length, and that the default
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settings (minimum path length of 0 and maximum of 7) is too easy
to outperform making them poor standards for 2D similarity.

In yet another comparison [67], several fingerprints (Open
Babel FP2, BCI, MACCS, Daylight and MOLPRINT2D) were compared
against 3D molecular shape-based methods (ESHAPE3D, ROCS,
PARAFIT, SHAEP and USR). Given the results, the authors state that
‘‘Overall, we find that the 2D fingerprint-based methods give better
Virtual Screening performance than the 3D shape-based
approaches for many of the DUD targets’’. This shows how 3D
methods do not always outperform simple fingerprint similarity
search.

However, when comparing fingerprint similarity searching to
other virtual screening approaches, the use of fingerprints has sev-
eral advantages:

� It requires minimal setup and configuration. Some fingerprints
can be fine-tuned in several ways, but it will still require a lot
less work than creating pharmacophores or selecting and pre-
paring a binding site for a protein–ligand docking.
� Most of the commonly used fingerprints are calculated based on

2D structures. Therefore, for these, conformations do not need
to be generated as opposed to shape-similarity or docking
approaches. This also means that 3D information will be mostly
missing from the screening, although that may not impact the
performance at all [67].
� It is less CPU-intensive than other methods. This means that it

can be carried out in a regular computer, and with the same
hardware, it will be a lot faster than other methods, especially
protein–ligand docking.

Nonetheless, fingerprint-based similarity searching also has
some pitfalls that users should be aware of:

� Activity cliffs: Activity cliffs are defined as pairs of compounds
with very high similarity yet highly different activity; therefore,
their presence can negatively impact the performance of the
similarity searching. Activity cliffs are dependent on the dataset
and the descriptors used to calculate similarity, so different
approaches will show different activity cliffs in the same data-
set, and finding the best solution can be tricky [68].
� Choice of descriptors: Similarity search performance depends

greatly on the descriptors used to calculate similarity, and in
the case of fingerprints, different fingerprints can yield very dif-
ferent performance results [69]. The obtained results can also
vary depending on the algorithm implementation.
� Reference molecules: For similarity searching, at least one

known active molecule is needed for use as a reference mole-
cule. However, it is often the case that not all parts of the refer-
ence molecules are equally relevant to overall activity. If this
redundancy is not taken into account, one may obtain inactive
molecules similar in irrelevant aspects to the reference mole-
cules ranked similarly or even higher than bona fide active mol-
ecules that are only similar to the reference molecules in the
activity-relevant aspects. A proper fingerprint choice based on
the knowledge of the reference compounds may help alleviate
this problem.
� Conformation coverage: When using 3D fingerprints, the con-

formations of each molecule should adequately cover its confor-
mational space, which requires the testing and optimization of
several parameters [70].

In addition, there are also many other pitfalls that are not
specific to similarity searching, but common to almost all
virtual screening methods, as thoroughly explained by Scior et al.
[70].
5. Conclusion

There are many types of fingerprints, and thus there is also
interest in knowing which fingerprints perform better. There are
open-source platforms to benchmark fingerprints for ligand-based
virtual screening that have been tested with 14 2D fingerprints
[28]. Studies have found that the overall performance of all the fin-
gerprints was similar, though, the inter-target difference in perfor-
mance was greater than the intra-target difference between
fingerprints. After ranking the fingerprints by performance, these
studies found that ECFP0 (with a diameter of 0 when only taking
the single atom as the environment) and 166-bit MACCS were
the worst when using early recognition evaluation methods. Using
the same methods, circular fingerprints were ranked higher, and
the topological torsions fingerprint was always highly ranked
regardless of the evaluation methods.

The current trend regarding similarity searching with molecular
fingerprints seems to be to combine different approaches through
data fusion [71] (either by combining different fingerprints
[63,72,73] or by combining fingerprints with other virtual screen-
ing methods [73,74], specially structure-based methods [75]). The
advantage of this approach is that, by combining methods that cap-
ture different chemical information, the highest-ranked hits will be
those that are highly ranked by several approaches, making them
more relevant and reducing the amount of artifacts that would
be introduced by a single approach. This could possibly lead to
the optimal search and combination of methods in data fusion,
with increased virtual screening performance.
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