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Chapter 6. Molecular mechanics and conformational analysis 

1. Force fields 

A force field refers to the functional form and parameter sets used to calculate the potential energy of a molecule. 
It is nothing more than a set of functions that take as input the coordinates of the atoms, and returns an energy 
value out of these. All-atom force fields provide parameters for every type of atom in a system, including hydrogen, 
while united-atom force fields treat the hydrogen and carbon atoms in each methyl group and each methylene 
bridge as one interaction center, thereby reducing the number of particles in the calculation with a significant 
calculation speedup as result. 

1.1. Functional form of a force field 

The basic functional form of potential energy in molecular mechanics includes 1) bonded terms for interactions of 
atoms that are linked by covalent bonds, and 2) nonbonded terms that describe the long-range electrostatic and 
van der Waals forces between atoms that are not bonded by covalent bonds. The specific decomposition of the 
terms depends on the force field, but a general form for the total energy in an additive force field can be written 
as: 

𝐸+,+"- = 𝐸#,'./. + 𝐸','#,'./. 

and in which the bonded and nonbonded terms can be further defined as: 

𝐸#,'./. = 𝐸#,'.0 + 𝐸"'1-/0 + 𝐸.&2/.3"-0 

𝐸','#,'./. = 𝐸/-/!+3,0+"+&! + 𝐸4.$ 

with Ebonds, Eangles and Edihedrals describing the energy contributions of all covalent bonds, angles and dihedral angles, 
respectively, and Eelectrostatic and Evdw the terms describing the nonbonded interactions between atoms due to the 
atomic partial electrostatic charges and the van der Waals interactions. In the following sections, each of these 
terms are described in more detail. 

1.2. Bond potential 

In standard force fields, the contribution by covalent bonds to the total relative energy is given by a Hooke’s law 
in which bonds are treated as springs: 

𝐸#,'.0 = @ 𝑘(𝑏 − 𝑏,)%
"--	#,'.0

 

with k being a bond force constant, b the actual bond length for a given bond, and b0 the reference length. For 
example, in the case of a C-C bond, k could be 100 kcal/mol/Å2 and b0 is 1.54 Å. Hence, when the bond is at its 
reference value of 1.54 Å, then the relative energy contribution equals 0.0 kcal/mol, but when the bond is 
stretched or compressed by 0.1 Å, then the energy rises by 1.0 kcal/mol. 

The force constant k and reference bond length b0 depends on the actual bond type (single, double, triple) and on 
the constituting atoms (Figure 49). 
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Figure 49. Bond potential illustrated for a single, double and triple C-C bond. Force field parameters are 1.54, 1.3 and 1.2 Å 
for b0, and 100, 200 and 400 kcal/mol/Å2 for k, respectively. The triple bond is more rigid than the single bond, as the amount 
of compression or stretching leads to a higher increase in relative energy. 

1.3. Angle potential 

The contribution of angles to the total energy of a molecule is similar to that from bonds: 

𝐸"'1-/0 = @ 𝑘(𝜃 − 𝜃6)%
"--	"'1-/0

 

which sums over all angles and in which k being the angle force constant, q the actual angle for a given bond angle, 
and q 0 the reference angle. Again, the actual values for k and q 0 depend on the constricting atoms that make up 
the bond angle. 

1.4. Dihedral angle potential 

A dihedral angle is an angle that is defined by four points, in casu four atoms. It is the angle between the planes 
that are defined by two sets of three atoms each, having two atoms in common (Figure 50): 

 

Figure 50. The dihedral angle for the N (blue) – C (cyan) – C (cyan) – O (red) sequence is defined as the angle between the 
plane through N-C-C and the plane through C-C-O. 

Dihedral angle potentials are a bit more complex than bond or angle potentials, since the dihedral angle potential 
is defined as a periodic function with an optional phase shift: 

𝐸.&2/.3"-0 = @ 𝑘(1 + cos(𝑛𝜙 − 𝛿))
"--	.&2/.3"-0

 

in which n is an integer ranging from 1, 2 or 3, f being the actual dihedral angle and d the phase shift (normally 
this is a value of 0° or 180°) (Figure 51). 
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Figure 51. Illustration of a dihedral potential and its dependence on the force field parameters. In this particular example, k 
was set to 10 kcal/mol, and both d (shown as d in the legend) and n were varied as indicated. A phase shift d of 0° is often the 
most appropriate, since this gives energy minima near 60, 90 and/or 180°. 

1.5. Electrostatic potential 

The first nonbonded potential is the electrostatic potential, which is derived from the interaction between the 
partial atomic charges between all nonbonded atom pairs: 

𝐸/-/!+3,0+"+&! = @
𝑞&𝑞7
𝑘𝐷𝑟&7"--	','#,'./.	"+,8	9"&30

 

with qi and qj the atomic partial charges of atom i and atom j, rij the actual distance between atom i and atom j, k 
a constant and D the dielectric constant. The atomic partial charges can be calculated using a wide variety of 
methods, including quantum chemical calculations from small molecule systems, and going up to less accurate 
approaches from protein systems. In most cases, fixed values for the atomic partial charges are used, with 
electronegative atoms such as N and O being assigned a negative value (for example -0.3 electrons), and carbons 
and hydrogen atoms a positive value. Depending on the sign of the atomic partial charge, atom pairs may attract 
or repel each other (Figure 52). 
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Figure 52. Illustration of the electrostatic energy as a function of the distance between the two atoms. Two cases are shown: 
the first case (blue) shows the change in electrostatic energy when both atoms carry an opposite charge (+0.3 and -0.3), while 
the second case shows the change in energy when both atoms carry a partial charge of the same sign (here +0.3 and +0.3). In 
the former case, the electrostatic energy is attractive, while in the latter situation the potential is repulsive. Note that the 
potential slowly limits a value of zero at long distances between the two atoms. 

1.6. Van der Waals potential 

The second nonbonded potential is the van der Waals (VDW) interaction, named after the Dutch scientist 
Johannes Diderik van der Waals. In contrast to the electrostatic interactions, these attractions are comparatively 
weak and vanish quickly at longer distances. Van der Waals interactions between two atoms arise from the balance 
between repulsive and attractive forces. Repulsion is due to the overlap of the electron clouds of both atoms, 
while the interactions between induced dipoles result in an attractive component. There are many mathematical 
models to describe the van der Waals interaction, but the 12-6 Lennard-Jones (LJ) potential is the one which is 
most often used to represent these interactions: 

𝐸4.$ = @ 𝜀&7 de
𝑅8&',&7
𝑟&7

f
)%

− 2e
𝑅8&',&7
𝑟&7

f
;

g
"--	','#,'./.	"+,8	9"&30

 

with rij the distance between atom i and j, Rmin,ij the reference distance at which the interaction is strongest, and 
eij a constant. At interatomic distances shorter than Rmin,ij, the VDW interaction potential is increasing and leads to 
repulsion between the two atoms. At distances longer than Rmin,ij, the VDW potential also increases and will 
approach zero at long distances (Figure 53). 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

El
ec

tr
os

ta
tic

 e
ne

rg
y 

(k
ac

l/m
ol

)

Distance between atoms (Å)

q1 = +0.3, q2 = -0.3 q1 = +0.3, q2 = +0.3



Page 90 of 128 

 
Figure 53. Illustration of the van der Waals potential between two atoms. The distance at which the potential reaches its 
minimum (in this case 2.5 Å) is called the van der Waals contact distance. This distance is dependent on the atom types; in 
general atoms with a higher atomic number also have a larger van der Waals radius. 

1.7. Popular force fields 

In the preceding sections, an overview was given of the different functions that are commonly used in force fields. 
The majority of the current force fields all rely on the same kind of functionalities although that small differences 
exists in both the functional form and/or the parameters used. There exist therefore a number of different force 
fields and some of them are listed here: 

• AMBER – ‘Assisted Model Building and Energy Refinement’. Widely used force fields for protein and 
DNA/RNA. 

• CHARMM – ‘Chemistry at HARvard Molecular Mechanics’. Originally developed at Harvard, nowadays 
maintained by Alexander MacKerrell in Baltimore. Widely used for both small molecules and 
macromolecules. 

• GROMOS – ‘GROningen MOlecular Simulation’. A force field that comes as part of the GROMOS software, 
a general-purpose molecular dynamics computer simulation package for the study of biomolecular 
systems. GROMOS force field A-version has been developed for application to aqueous or apolar 
solutions of proteins, nucleotides, and sugars. The B-version to simulate gas phase isolated molecules is 
also available. 

• OPLS – ‘Optimized Potential for Liquid Simulations’. Developed by William Jorgensen at the Yale 
University Department of Chemistry. OPLS variants include OPLS-AA, OPLS-UA, OPLS-2001 and OPLS-
2005. 

• UFF – ‘Universal Force Field’. A general force field with parameters for the full periodic table up to and 
including the actinoids, developed at Colorado State University. 

• MMFF – ‘Merck Molecular Force Field’. Developed at Merck and suitable for a broad range of molecules. 

• MARTINI - A coarse-grained potential developed by Marrink and coworkers at the University of 
Groningen, initially developed for molecular dynamics simulations of lipids, later extended to various 
other molecules. The force field applies a mapping of four heavy atoms to one CG interaction site and is 
parameterized with the aim of reproducing thermodynamic properties. 
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2. From 1/2D to 3D: Conformation generation with distance geometry 

As already described before, molecules are often represented in 1D using the SMILES format, or in 2D with SD-
format. However, in order to be able to explore the conformation of molecules, for example within the context of 
molecular dynamics or docking (see below), these 1D or 2D structures need to be converted into a real 3D 
representation, with the location in space of each atom represented with a x-, y-, and z-coordinate. There are 
many approaches that can be used for this purpose, but distance geometry is very often used and quite robust. In 
this section, we will briefly explain the rationale behind distance geometry, however without going into the 
mathematical details. 

One way to describe the 3D-conformation of a molecule is in terms of the distances between all pairs of atoms. 
For a molecule that consists of N atoms, there are N (N-1) / 2 interatomic distances in the molecule, which can be 
described using a N x N symmetrical matrix. In this matrix, both the elements (i,j) and (j,i) contain the distance 
between atoms i and j. The diagonal elements are by definition all zero. The crucial feature about distance 
geometry is that this matrix cannot contain random distances; rather there are some constraints that can be 
defined to restrict the distances to a small set of potential solutions. For example, given a simple molecule such 
as butane, each cell within the distance matrix can be filled with both a lower and a upper distance, as examplified 
in Figure 54: 

 

Figure 54. The principle of distance geometry explained using butane (four carbon atoms) as an example. The bond length 
between each of the bonded atoms is 1.5 Å, and the VDW radius of each carbon atom is 1.8 Å, implying that the closest 
distance that is possible between a pair of unbonded carbon atoms is 3.6  Å. The longest distance possible between any pair 
of unbonded carbon atoms is equal to the number of bonds between them, multiplied by the bond lengths. In practice, there 
are many additional restraints that can be generated to limit the boundaries in the distance matrix. For example, the minimal 
and maximal distances between atoms 0 and 2 is not 3.0/3.6 as is shown in the figure, but rather a single 2.45 Å given the 
fact that these two atoms are 1-3 linked and that the bond angle of 109.5° between 0-1-2 imposes additional limitations on 
the distance between 0 and 2. Using chemical knowledge many additional restraints can be formulated, like in the case of ring 
systems or between atoms separated by a torsion angle. 

With a completed distance matrix at hand (containing upper and lower bounds), random values are assigned to 
each interatomic distance between its upper and lower bonds. In the following step, the distance matrix is 
converted into a trial set of Cartesian coordinates using a series of matrix operations, which are then refined in 
the final step. 

Conformation generation with distance geometry is standard incorporated in RDKit, and can be called very 
conveniently to generate 3D-conformations from SMILES representations: 
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from rdkit import Chem 

from rdkit.Chem import AllChem 

mol = Chem.MolFromSmiles("C1CCOCC1NC=O") 

mol = Chem.AddHs(mol) 

AllChem.EmbedMolecule(mol) 

It is common to refine the generated conformation(s) using some kind of energy minimization procedure. 

3. Energy minimization 

Energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the 
process of finding a molecular conformation, according to the energy calculated by the used force field, the net 
inter-atomic force on each atom is acceptably close to zero and the position on the potential energy surface is a 
(local) minimum. The motivation for performing a geometry optimization is the physical significance of the 
obtained structure: optimized structures often correspond to a substance as it is found in nature and the geometry 
of such a structure can be used in a variety of experimental and theoretical investigations such as quantitative 
structure-activity relationships. 

Starting from a random conformation, and because most minimization algorithms can only go downhill, each 
energy minimization process results in the identification of the nearest local minimum; however, this is not always 
the global energy minimum (Figure 55). 

 

Figure 55. The global minimum (A) and two local minima (B) on the energy profile when rotation along the indicated torsion 
angle. The relative energy is calculated using a molecular mechanics force field. 

A number of methods are available to calculate to local minimum, the steepest descent and conjugate gradients 
algorithm are two of the most commonly used ones. Of these two methods, steepest descent is several times 
faster than conjugate gradients, but the latter method converges after a smaller number of iterations and it 
therefore more productive (Table 10). 
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Table 10. Comparison between the steepest descent and conjugate gradient methods for energy minimisation  of netropsin, 
a molecule with 13 flexible torsion angles. Metrics for an initial minimisation and a stringent minimisation are given. From 
reference 6. 

Method 
Initial minimisation (gradient < 1 kcal/Å2) Stringent minimisation (gradient < 0.1 kcal/Å2) 

CPU time (s) Number of iterations CPU time (s) Number of iterations 

Steepest descent 67 98 1,405 1,893 

Conjugate gradient 149 213 257 367 

4. Conformational analysis 

Conformation generation is the process of transforming the 1D- or 2D-structure of a molecule into a 3D-structure, 
hence a structure in all atoms of the molecule have x-, y-, and z-coordinates assigned. Examples of 1D-
representations include SMILES and InChi, and 2D-representations can include ‘flat’ SDF or PDB-formats (with ‘flat’ 
meaning that the file does not contain z-coordinates). Since the majority of molecules are conformationally flexible 
(rotation around single bonds), multiple conformations exist for a given molecule and conformational analysis is 
the process of generating these conformations. Conformational analysis can therefore be regarded as the analysis 
of the conformations that molecules can adopt as a result of single bond rotations, with the intention to locate 
the global energy minimum and several other minima. 

A molecule can adopt an equilibrium between several such minima, the relative abundance of which is determined 
by the Boltzmann distribution, and which in turn is merely determined by the relative free energy of each pose. 
The shape of a molecule is not static but is a dynamic equilibrium between a number of conformations, the 
preferred ones being those we would encounter more times than any other if we were to take a series of snapshots 
of the population, because they have lower free energies. Conformational analysis can be considered to consist 
of two parts (Figure 56): 

• The equilibrium distribution of the different energy minima of a molecule is driven by the 
thermodynamics (the differences in Gibbs free energies between the minima): 

𝐾/ = 𝑒<
=>
?@  

• The rate of interconversion between the different minima of a molecule is driven by the kinetics (the 
height of the free energy of activation barrier): 

ln j
𝑘
𝑇k = 23.76 −

Δ𝐺‡

𝑅𝑇  

where Δ𝐺‡ is the free energy of barrier and k the rate constant (in s-1). 
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Figure 56. Conformational profile of n-butane, thereby focusing on the C-C-C-C bond. The different conformers for butane are, 
from left to right, syn-planar (0°), gauche (60°), anti-clinal (120°) and staggered (180°). The free energy difference between 
the gauche and staggered conformations is about 1 kcal/mol, corresponding to 16% of the conformations in gauche and 84% 
in staggered. Conversion from staggered to gauche will be slower than the corresponding conversion from gauche to 
staggered, as can be seen from the differences in activation free energies 𝛥𝐺‡. 

Conformational analysis normally consists of two steps, and which might be iterated over and over again until a 
satisfactory solution has been identified: 

• Energy calculation process.  

• Exploration of the conformational space. 

4.1. Systematic search 

A systematic search is conceptually the simplest of all conformational analysis methods. Using a starting 3D-
structure, torsion angles are varied in regular increments and at each step the corresponding energy is calculated. 
The conceptual simplicity of the systematic search method is in sharp contrast to the combinatorial complexity of 
its calculation. If A is the torsion angle increment and T is the number of rotatable torsion angles in the molecule, 
then the total number of possible conformers is (360/A)T. The relative growth in the number of energy calculations 
is given Table 11. 
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Table 11. Relative computational complexity of a systematic search as a function of torsion angles and angle increment. 

Angle increment (°) 
Number of torsions 

5 10 20 40 

30 1 9.1 x 105 2.1 x 1017 3.2 x 1039 

15 3.2 x 101 9.1 x 108 2.2 x 1023 3.5 x 1051 

8 7.4 x 102 5.0 x 1011 6.5 x 1029 2.9 x 1062 

4 2.4 x 104 5.0 x 1014 6.8 x 1035 3.2 x 1072 

2 7.6 x 105 5.3 x 1017 7.1 x 1040 3.5 x 1086 

As a result of this computational complexity, systematic search methods to identify the global minimum can only 
be used in case of molecules having a limited number of flexible torsion angles, making the method less useful in 
practice. For this reason, other methods have been developed, including the Monte Carlo method and genetic 
algorithms. 

4.2. Monte Carlo 

Monte Carlo represents a technique to find a good solution to an optimization problem by trying random 
variations of the current solution. A worse variation is accepted as the new solution with a probability that 
decreases as the computation proceeds. Monte Carlo is not exhaustive however, meaning that some predefined 
heuristics are needed to define a suitable endpoint. 

In its simple form, starting from a given starting structure random alterations are made and the internal energy of 
the resulting structure is calculated and an energy minimization step is undertaken. The new conformer produced 
is saved if the energy or the difference in energies between the new and the best conformer is less than the 
threshold optimum value. The search is automatically terminated after a user-defined number of unproductive 
attempts. 

The Metropolis Monte Carlo approach amplifies the changes of finding the global minimum. It involves number of 
sequences where the Monte Carlo algorithm is run at different temperatures. The first phase runs at temperature 
T and an assortment of conformations are generated. The most stable conformation is used as starting origin for 
next phase where the temperature is set at a lower temperature. The process is repeated until the probability 
equation becomes selective towards which structure is accepted. Thus, a small part of the conformation space is 
meticulously investigated. The Metropolis Monte Carlo method introduces a probabilistic criteria to accept new 
conformers: 

𝑝 = 𝑒
<∆C

@D!E  

with DE being the energy difference between the new conformation and the initial starting one, T the temperature 
and Kb the Boltzmann constant. The acceptance test is performed by choosing a random number r (between 0 and 
1) which is then compared to p. If r < p, the change is accepted and the new conformations is taken as the new 
starting point. 
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Figure 57. The Monte Carlo method for conformational analysis. The procedure is stopped after a user-defined number of 
cycles. The random number is defined as r, T the temperature and kb the Boltzmann constant. In the Metropolis approach, the 
temperature T is slowly decreased as the number of runs increase. 

4.3. Genetic algorithm 

A genetic algorithm (GA) is search heuristic optimization method that is based on various computational models 
of Darwinian evolution. The genetic algorithm is a large-scale optimization algorithm mimicking a biological 
evolution in a randomly generated population. The algorithm reflects the process of natural selection where the 
fittest individuals are selected for reproduction in order to produce offspring of the next generation. A number of 
conformations forms this population. New chromosomes are generated by modifying some of the torsion angles, 
and a new population is created in accordance to operators (crossover and mutation). The process is repeated 
until it converges to a minimum energy structure. 

Five phases are considered in a genetic algorithm: 

1. Initial population 

2. Fitness function 

3. Selection 

4. Crossover 

5. Mutation 

Initial population 

The process begins with a set of individuals which is called a population. In the context of conformational analysis, 
each individual is a set of torsion angle values representing a single conformation of the molecule of which one 
wants to find the global minimum (Figure 58). 
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Figure 58. Genes (blue region), chromosomes (red region) and the population (all chromosomes). A single chromosome defines 
a single conformer, while each gene represents a single torsion angle in the molecule (in this example, each conformation is 
represented by five torsion angles). 

Fitness function 

The fitness function determines how fit an individual is (the ability of an individual to compete with other 
individuals). It gives a fitness score to each individual. The probability that an individual will be selected for 
reproduction is based on its fitness score. In the case of a genetic algorithm for conformational analysis, the fitness 
function is simply the total molecular mechanics energy of each molecule, as calculated by the force field. 

Selection 

The idea of selection phase is to select the fittest individuals and let them pass their genes to the next generation. 
Two pairs of individuals (parents) are selected based on their fitness scores (energies). Individuals with high fitness 
(in casu the lowest energies) have more chance to be selected for reproduction. 

Crossover 

Crossover is the most significant phase in a genetic algorithm. For each pair of parents to be mated, a crossover 
point is chosen at random from within the genes. Offspring are created by exchanging the genes of parents among 
themselves until the crossover point is reached, and the new offspring are added to the population (Figure 59). 

 

Figure 59. The workflow of the crossover and mutation operators in a genetic algorithm, illustrated on a population of two 
chromosomes. 

Mutation 

In certain new offspring formed, some of their genes can be subjected to a mutation with a low random 
probability. This implies that some of the torsion angles can be changed randomly (between 0 and 359°). Mutation 
occurs to maintain diversity within the population and to prevent premature convergence (Figure 59). 
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Pseudocode 

START  
Generate the initial population 

Compute energy 
REPEAT 
 Selection 

 Crossover 

 Mutation 

 Compute energy 

UNTIL population has converged 

STOP 

 

 




