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Chapter 7. Molecular dynamics 

1. Newton’s 2nd law of motion 

Molecular dynamics (MD) is a method to simulate the physical movement of atoms and molecules using a series 
of mathematical calculations. Commonly, this is done by numerically solving Newton’s equations of motion for the 
system of interacting atoms and bonds, in which the forces and the potential energies between these atoms are 
calculated from the standard molecular mechanics force fields (Chapter 6). 

A typical MD simulation consists of an iterative process which involves a number of discrete steps: 

1. Given a set of atomic positions and a defined molecular mechanics force field, the first step consists of 
the calculation of the forces on each atom. 

2. In the second step, the acceleration on each atom can be deduced from the force that acts on each atom. 

3. In the third step, each atom is repositioned according the acceleration that is acting on it. For this 
purpose, small time steps are required to ensure numerical stability. 

4. If enough steps have been performed, the simulation will step. If not, the simulation will continue in step 
1. 

These steps are described in more detail in the following sections. 

1.1. Step 1: force calculation 

The mathematical principles behind a MD simulation are quite simple, and involve the calculation of the forces 
between the atoms from the potential energy function that defines the system: 

�⃗� = −∇𝑉(𝑟) 

with �⃗� being the forces on the system and 𝑉(𝑟) the potential energy of the system as function of the atomic 
positions �⃗�.  

Using the potential energy function as shown on page 86, calculating the corresponding first derivatives to obtain 
the forces is actually quite simple: 

• Bond forces: 𝐹# = −2𝑘(𝑏 − 𝑏6) 

• Angle forces: 𝐹" = −2𝑘(𝜃 − 𝜃6) 

• Torsion angle forces: 𝐹. = 𝑘𝑛 sin(𝑛𝜙 − 𝛿) 

• Electrostatic forces: 𝐹/ = 𝑞&𝑞7 𝐷𝑘𝑟&7%⁄  

• Van der Waals forces: 𝐹4.$ = −12𝜀&7𝑅8&',&7; A𝑟&7; − 𝑅8&',&7; D 𝑟&7)Fu  

Plots of the potentials and corresponding forces are shown in Figure 60. 
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Figure 60. Illustration of the different force field potentials and the corresponding forces that are derived thereof. A) Upper 
left: bond potential and force with b0 = 1.5 and k = 1. B) Upper right: torsion angle potential and force with n = 1, k = 1, d = 0. 
C) Lower left: electrostatic potential and force with qi = +1 and qj = -1, D =1, k = 1. D) Lower right: Van der Waals potential and 
force with eij = 1, Rmin,ij = 3. 

1.2. Step 2: atom acceleration 

Once the force acting on each atom is known, it is possible to calculate the acceleration for each atom from 
Newton’s 2nd law of motion: 

�⃗� = 𝑚�⃗� 

Therefore: 

�⃗�& =
�⃗�&
𝑚&

 

with i being the index of the particular atom i.  

1.3. Step 3: new atom positions 

Several methods have been developed to calculate new atoms positions from the acceleration on each atom. The 
most important ones are the Verlet and leap-frog algorithms. 

Verlet algorithm 

The Verlet algorithm is based on the Taylor series expansion: 

𝑓(𝑥6 + 𝑥) = 𝑓(𝑥6) +
𝑥)

1! 𝑓
G(𝑥6) +

𝑥%

2! 𝑓
GG(𝑥6) +

𝑥F

3! 𝑓
GGG(𝑥6) +⋯+

𝑥'

𝑛! 𝑓
(')(𝑥6) 

Taylor series are often truncated after the term involving the second derivative. Applied to our MD simulation, we 
can rewrite the new set of coordinates as 𝑟(𝑡 + 𝛿𝑡), and expand this as a Taylor series with t as x0 and dt as x (or 
-dt as x):  
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𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) +
𝛿𝑡)

1 𝑟G(𝑡) +
𝛿𝑡%

2 𝑟GG(𝑡) +⋯ 

𝑟(𝑡 − 𝛿𝑡) = 𝑟(𝑡) −
𝛿𝑡)

1 𝑟G(𝑡) +
𝛿𝑡%

2 𝑟GG(𝑡) +⋯ 

which yields the following considering that 𝑟G(𝑡) = 𝑣(𝑡) and 𝑟GG(𝑡) = 𝑎(𝑡): 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡	𝑣(𝑡) +
1
2𝛿𝑡

%	𝑎(𝑡) 

𝑟(𝑡 − 𝛿𝑡) = 𝑟(𝑡) − 𝛿𝑡	𝑣(𝑡) +
1
2𝛿𝑡

%	𝑎(𝑡) 

with v(t) being the velocities on the atoms and a(t) the accelerations. Adding these two equations gives: 

𝑟(𝑡 + 𝛿𝑡) + 𝑟(𝑡 − 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡	𝑣(𝑡) +
1
2𝛿𝑡

%	𝑎(𝑡) + 𝑟(𝑡) − 𝛿𝑡	𝑣(𝑡) +
1
2𝛿𝑡

%	𝑎(𝑡) 

which can be rewritten as: 

𝑟(𝑡 + 𝛿𝑡) = 2𝑟(𝑡) + 𝛿𝑡%	𝑎(𝑡) − 𝑟(𝑡 − 𝛿𝑡) 

Implementation of the Verlet algorithm is straightforward. Calculation of a MD trajectory [r(t+dt)] requires only a 
timestep dt, the positions at timestep -dt [r(t-dt)], and the accelerations a(t) which in turn are derived from the 
forces. 

Leap-frog algorithm 

The leap-frog algorithm uses the following relationships: 

𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡	𝑣 j𝑡 +
1
2𝛿𝑡k 

𝑣 j𝑡 +
1
2𝛿𝑡k = 𝑣 j𝑡 −

1
2𝛿𝑡k + 𝛿𝑡	𝑎(𝑡) 

The velocities 𝑣 x𝑡 + )
%
𝛿𝑡y are first calculated from the velocities at 𝑡 − )

%
𝛿𝑡 and the accelerations at time t. From 

this, the coordinates 𝑟(𝑡 + 𝛿𝑡) are then derived from the velocities at 𝑡 − )
%
𝛿𝑡 with the positions at the current 

frame. Hence, the velocities thus ‘leap-frog’ over the positions, which explains the name of the algorithm (Figure 
61). 

 

Figure 61. Sketch showing the structure of the leap-frog method. Once the algorithm has started with r(0) and 𝑣("
#
𝛿𝑡), the 

algorithms continues by r and v leap-frogging over each other. 

Choosing a timestep dt 

An important parameter in the equations of motion of each MD simulation is the timestep dt. Using a large 
timestep would speed up the simulations significantly, but this would lead to algorithmic instabilities as the 
calculated atom relocations would be too large (Figure 62). 
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Figure 62. Illustration of the importance of using a suitable timestep. Blue spheres are atoms which are fixed in space, while 
the red sphere is the atom that is able to relocate due to the forces (blue dotted arrows) imposed by the surrounding blue 
atoms. (a) Relocation of the red atoms using a timestep of 1 fs. This yields a new situation in which the red atom is moved 
somewhat closer to the 3rd blue atom, but remains at a distance which is still far enough to avoid sterical clashes. (b) With a 
timestep of 10 fs, the red atom is relocated too far which results in a sterical clash with the 3rd blue atom. 

It has been shown that the most optimal timestep should be 10 times smaller than the period of the highest 
vibrational frequencies of a molecule. In practice, a timestep of 1 fs is often used, and this number can be doubled 
to 2 fs in cases where the highest frequencies, in casu the C-H bond stretching vibrations, can be freezed out by 
constraining these bonds to their equilibrium values. Examples of such constraints are the SHAKE [7], LINCS [8] 
and RATTLE [9] algorithms.  

2. Running a simulation 

2.1. Setting up the protein and its environment 

Obtaining protein coordinates 

The basic ingredient to start a molecular dynamics simulations is a structure coordinate file of the molecule one 
wants to study. In case this is a protein or oligonucleotide structure, these structure coordinates can be 
downloaded from the Protein Databank (PDB, http://www.rcsb.org/pdb/home/home.do). The PDB contains 
thousands of high resolution protein structures that are derived by X-ray/neutron scattering and NMR methods. 
Once the PDB is available and downloaded, it is necessary to pre-format it depending on the presence of ligands 
or water molecules in the structure. It occurs that ligand coordinates are present in the PDB file and the MD 
software doesn’t recognize the ligand. In this case, ligand chemistry needs to be explicitly defined by extracting 
the coordinates of the ligand and separated from main PDB file. A separated topology is constructed manually for 
the ligand and the information is added in the main topology file. It is also advised to remove external water 
molecules that are present in the PDB file. 

Cleaning the protein structure 

1) Missing loops. Not all the structures of the PDB are complete; some structures are missing some loops in the 
protein due to extensive motions of these loops. This leads to smearing out the electron density of these regions 
and therefore lack of visibility in the corresponding electron density maps. Several websites are online that provide 
tools to model these missing loops: 

• ModLoop (https://modbase.compbio.ucsf.edu/modloop/) 

• RAPPER (http://mordred.bioc.cam.ac.uk/~rapper/ca_trace.php) 
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• FALC-Loop (http://falc-loop.seoklab.org/) 

• GalaxyWEB (http://galaxy.seoklab.org) 

• ArchPRED (http://manaslu.fiserlab.org/loopred/) 

• SuperLooper (http://bioinf-applied.charite.de/superlooper/) 

• RCD+ (http://rcd.chaconlab.org) 

• ROSIE (http://rosie.rosettacommons.org) 

2) Protonation state. Next to having all missing residues fixed, another thing that should be taken care of is the 
protonation state of the acidic and basic protein residues, such as histidine (HIS), aspartic acid (ASP), glutamic acid 
(GLU), lysine (LYS), arginine (ARG), cysteine (CYS) and tyrosine (TYR). Depending on the local pH, these residues 
can reside in their acidic (deprotonated) or in their basic (protonated) form (Figure 63). The pKa’s of these seven 
residue are given in Table 12. 

 

Figure 63. The seven residues which can occur either in their acidic form (left side) or basic form (right side). 
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Table 12. pKa values of the acidic form of the seven residues which may occur in either acidic or basic form. Depending on the 
pH of the local environment (which may differ significantly from the pH of the global environment), residues may be 
protonated, deprotonated, or reside in both forms. The prevailing form at pH 7.4 can be calculated from the Henderson-
Hasselbalch equation 𝑝𝐻 = 𝑝𝐾$ + 𝑙𝑜𝑔([𝑏𝑎𝑠𝑒] [𝑎𝑐𝑖𝑑]⁄ ). 

Residue pKa Prevailing form at pH 7.4 

Aspartic acid 3.65 100% basic (anion) 

Glutamic acid 4.25 100% basic (anion) 

Lysine 10.53 100% acidic (cation) 

Arginine 12.48 100% acidic (cation) 

Histidine 6.00 96% basic (neutral), 4% acidic (cation) 

Tyrosine 10.07 100% acidic (neutral) 

Cysteine 8.33 10% basic (anion), 90% acidic (neutral) 

It is important to calculate the pKa of each ionisable residue in its protein environment, since the local environment 
of each residue may alter its pKa significantly. There exist a number of online tools for the calculation of these 
pKa’s: 

• Karlsberg+ (http://agknapp.chemie.fu-berlin.de/karlsberg/) 

• H++ (http://biophysics.cs.vt.edu) 

• PDB2PQR (http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/) 

3) Asparagine, glutamine and histidine flips. Explicit hydrogens are needed for many of the MD force fields to 
function correctly, and structures determined by crystallography almost never include these hydrogens. As a 
consequence, hydrogen atoms need to be added prior to starting off a MD simulation, and this process is often 
automatized by most MD programs. However, a common problem is that the sidechain ends of asparagine (ASN), 
glutamine (GLN) and HIS residues are easily fitted 180° backwards, since the electron density alone cannot usually 
distinguish the correct choice of orientation. There are online tools available that can automatically diagnose and 
correct these types of systematic errors by considering all-atom steric overlaps as well as hydrogen bonding within 
each local network. The use of such tool is strongly recommended prior to adding any hydrogens: 

• MolProbity (http://molprobity.biochem.duke.edu) 

 

Figure 64. Sidechain flips of ASN, GLN and HIS illustrated. The evidence of such flips can only be deduced from inspection of 
the local environment around each of these residues. 

Setup the box for simulations 

1) Choosing the periodic boundary box. When simulating biomolecules in a water environment, periodic boundary 
conditions (PBC) are used to avoid artefacts resulting from boundary effects caused by finite size, and make the 
system more like an infinite one. During the simulation, only the properties of the original simulation box need to 
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be recorded and propagated. The minimum-image convention is a common form of PBC particle bookkeeping in 
which each individual particle in the simulation interacts with the closest image of the remaining particles in the 
system (Figure 65). 

 

Figure 65. Periodic boundary condition in two dimensions. The blue square denotes the PBC box which contains three particles 
(red, dark green and light green). In computer simulations, this blue PBC box is the original simulation box, and the others are 
copies which are called images. A particle which has passed through one face of the simulation box should re-enter through 
the opposite face, as shown by the dotted arrow. 

PBC requires the unit cell to be a shape that will tile perfectly into a three-dimensional crystal. Thus, a spherical or 
elliptical droplet cannot be used. A cube or rectangular prism is the most intuitive and common choice, but can 
be computationally expensive due to unnecessary amounts of solvent molecules in the corners, distant from the 
central macromolecules. An alternative that requires less volume is the truncated octahedron (Figure 66). 

 

Figure 66. Two commonly used periodic box unit cells. Left: rectangular box. Right: truncated octahedron. This latter shape 
resembles more a spherical shape and is therefore often more ‘economical’ in terms of the number of solvent molecules that 
are needed to fill up the entire volume. 

2) Adding solvent. MD simulations of biomolecular systems are performed in an environment containing water, 
which implies that a suitable water model has to be selected. There are a number of water models available (Figure 
67), and it is important that the selected water model force field parameters are compatible with the force field 
parameters of the biomolecular system. In most cases, the TIP3P water model is usually fine. 



Page 106 of 128 

 

Figure 67. Parameters for some water models. 1) TIP3P model: topology a, s = 3.15 Å, q = 104.5°, q1 = +0.42, q2 = -0.84, l1 = 
0.96 Å; 2) SPC model: topology a, s = 3.17 Å, q = 109.5°, q1 = +0.41, q2 = -0.82, l1 = 1.00 Å; 3) TIP4P model: topology b, s = 
3.15 Å, q = 104.5°, q1 = +0.52, q2 = -1.04, l1 = 0.96 Å, l2 = 0.15 Å. 

3) Charge-neutralising the system. The addition of ions is often needed to charge-neutralise the system (total 
charge of the entire box should be zero) and to reproduce an experimental environment in terms of salt 
concentration (for example 150 mM NaCl). Most MD software package contain tools to achieve this in a rather 
automated fashion. 

2.2. Maintaining temperature and pressure: ensembles 

Canonical ensemble: NVT 

In a canonical ensemble, temperature, box volume and the number of particles is kept constant. The box volume 
is kept constant by keeping the unit cell dimensions unaltered. Temperature is maintained through one of the 
multiple thermostats that are available. The instantaneous value of the temperature of an unconstrained system 
is related to the kinetic energy via the particles’ linear momenta: 

𝑇 =
2
𝑁𝑘#

@
|𝒑||⃗ &|%

2𝑚&

J

&()

 

where N is the number of atoms, mi the atomic mass of atom i, kb the Boltzmann constant, and 𝒑||⃗ &  the translational 
momentum of atom i. 

An obvious way to alter the temperature of the system is velocity scaling. If the temperature at time t is T(t) and 
the velocities are multiplied by a factor l, then the associated temperature change DT can be calculated as: 

∆𝑇 =
2
𝑁𝑘#

@
(𝑚&𝜆�⃗�&)%

2𝑚&

J

&()

−
2
𝑁𝑘#

@
(𝑚&�⃗�&)%

2𝑚&

J

&()

 

∆𝑇 =
2𝜆%

𝑁𝑘#
@

(𝑚&�⃗�&)%

2𝑚&

J

&()

−
2
𝑁𝑘#

@
(𝑚&�⃗�&)%

2𝑚&

J

&()

 

∆𝑇 = 𝜆%𝑇(𝑡) − 𝑇(𝑡)    hence    ∆𝑇 = (𝜆% − 1)𝑇(𝑡) 

𝑇6 − 𝑇(𝑡) = 𝜆%𝑇(𝑡) − 𝑇(𝑡) 

𝑇6 = 𝜆%𝑇(𝑡) 
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𝜆 = �
𝑇6
𝑇(𝑡) 

The simplest way to control the temperature is thus to multiply the velocities at each time step by the factor l = 
DT0/T(t), where T(t) is the current temperature as calculated from the kinetic energy and T0 being the desired 
temperature. 

A weaker formulation of this approach is the Berendsen thermostat. To maintain the temperature the system is 
coupled to an external heat bath with fixed temperature T0. The velocities are scaled at each timestep dt, such 
that the rate of change of temperature is proportional to the difference in temperature: 

𝛿𝑇(𝑡)
𝛿𝑡 =

1
𝜏 A𝑇6 − 𝑇

(𝑡)D 

where t is the coupling parameter which determines how tightly the bath and the system are coupled together. 
This method gives an exponential decay of the system towards the desired temperature. The change in 
temperature between successive time steps is: 

∆𝑇 =
𝛿𝑡
𝜏 A𝑇6 − 𝑇

(𝑡)D 

and after substituting (l2-1)T(t) for DT, the scaling factor for the velocities can be deduced : 

𝜆%𝑇(𝑡) − 𝑇(𝑡) =
𝛿𝑡A𝑇6 − 𝑇(𝑡)D

𝜏  

𝜆%𝑇(𝑡) =
𝛿𝑡A𝑇6 − 𝑇(𝑡)D

𝜏 + 𝑇(𝑡) 

𝜆% =
𝛿𝑡A𝑇6 − 𝑇(𝑡)D

𝜏𝑇(𝑡) + 1 

𝜆% =
𝛿𝑡
𝜏 j

𝑇6
𝑇(𝑡) − 1k + 1 

If t is large, then the coupling will be weak. If t is small, then the coupling will be strong. If t is chosen the same as 
the timestep dt, the Berendsen thermostat is nothing else than the simple velocity scaling. Values of t ≃ 0.1-0.4 
ps are typically used in MD simulations of condensed-phase systems, giving dt/t ≃	0.01-0.0025. 

Velocity scaling artificially prolongs any temperature differences among the components of the system, which can 
lead to ‘hot solvent, cold solute’ phenomena, in which the temperature of the solvent is warmer than that of the 
solute, even though the overall temperature of the system may be at the desired value. One solution is to couple 
a particular set of particles (for example the solute as one set, and the solvent as a second set) to a separate 
thermostat. In addition, both the velocity scaling method as well as the Berendsen thermostat do not give rigorous 
canonical averages. Two methods that do generate rigorous canonical ensembles are the stochastic collisions 
methods and the extended system method. 

In the stochastic collisions methods, a particle is randomly chosen at intervals and its velocity is reassigned by 
random selection from the Maxwell-Boltzmann distribution at the desired temperature. The method is also known 
as the Anderson method. It can be viewed as a method in which the system is in contact with a heat bath that 
randomly emits ‘heat particles’ which collide with the atoms in the system. 

The extended system method was developed by Nose and Hoover, and is therefore also known as the Nose-
Hoover temperature coupling bath. The mathematical derivatisation will not be covered here. 
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Isothermal-isobaric ensemble: NPT 

In an isothermal-isobaric ensemble, temperature, pressure and the number of particles is kept constant. Many 
experimental measurements are made under conditions of constant temperature and pressure, and so 
simulations in the isothermal-isobaric ensemble are most directly relevant to experimental data. Temperature is 
maintained through one of the multiple thermostats that are available and which are explained in the previous 
section. 

The pressure fluctuates more than other quantities such as the temperature. This can be explained by the fact 
that the pressure is related to the forces and positions of the particles: 

𝑝 =
𝑘#𝑇𝑁
𝑉 +

1
3𝑉@𝑓*K||||⃗ 𝑟*K|||⃗

*LK

����������
 

where p is the pressure, T is the temperature, V is the volume and kb is the Boltzmann constant. The overline is an 
average, which is a time average in molecular dynamics, 𝑓*K||||⃗  is the force on particle i exerted by particle j, and 𝑟*K|||⃗  is 
the vector going from i to j: 𝑟*K|||⃗ = 𝑟K||⃗ − 𝑟K||⃗ . This quantity changes more quickly with the positions than the 
temperature, hence the greater fluctuations in pressure. 

A macroscopic systems maintains constant pressure by changing its volume; hence a simulation in isothermal-
isobaric conditions also maintains constant pressure by changing its volume of the PBC unit cell. The amount of 
volume fluctuation is related to the isothermal compressibility k: 

𝜅 = −
1
𝑉 j
𝛿𝑉
𝛿𝑃k@

 

Larger values of k indicate more easily compressible substances, with larger volume fluctuations that occur at a 
given pressure than in less compressible substances. 

Volume changes in an isobaric ensemble are achieved by changing the size of the unit cell in one, two or all three 
dimensions (normally in all directions). The relation between the isothermal compressibility k and the box volume 
is given by: 

𝜅 =
1
𝑘#𝑇

〈𝑉%〉 − 〈𝑉〉%

〈𝑉%〉  

with 〈𝑉%〉 being the time average of the squared volumes, and 〈𝑉〉% the square of the time average of the volumes. 

The fraction 
〈N"〉<〈N〉"

〈N"〉
 corresponds to the mean square volume displacement. Fluctuations in pressure and 

temperature for a typical MD simulation of a protein in a water box are given in Figure 68. 
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Figure 68. Temperature and pressure fluctuations in a MD simulation of a protein in a water box of dimensions 81.8 x 86.6 x 
107.9 Å3. Average simulation temperature is 300.0 K with a standard deviation of 1.2 K, and average simulation pressure is -
9.0 bar with a standard deviation of 100.6 bar. 

Many of the methods to control pressure are similar to the ones to control temperature. Thus, pressure can be 
maintained at a constant value by scaling the volume. An alternative is to use a pressure bath in analogy to the 
temperature bath as found in the Berendsen thermostat. The rate of pressure change is given by: 

𝑑𝑃(𝑡)
𝑑𝑡 =

1
𝜏9
x𝑃3/P − 𝑃(𝑡)y 

with tp being the coupling constant, Pref the reference pressure of the bath, and P(t) the actual pressure at time t. 
To regulate pressure, the volume of the simulation unit cell is scaled by a factor l, which is achieved by scaling the 
atomic coordinates towards the centre of the box by a factor l1/3. This factor l can be derived according: 

𝜆 = 1 − 𝜅
𝛿𝑡
𝜏9
A𝑃 − 𝑃3/PD 

and the new centre of mass coordinates are given by: 

𝑟&G = 𝜆)/F𝑟& 

2.3. Short- and long-range interactions 

Short-range 

The most time-consuming part of a MD simulation is the calculation of the non-bonded energies and forces. The 
number of bond potential, angle potentials and torsion angle potentials in a force field model are all proportional 
to the number of atoms (order N), but the number of non-bonded terms that need to be evaluated at each step 
relates to the square of the number of atoms and is thus of order N2. 

Although in principle the non-bonded interactions should be calculated between every pair of atoms in the system, 
fortunately this is not always justified since the 12-6 Lennard-Jones potential falls off very quickly with distance. 
At a distance of 3 times Rmin,ij, the van der Waals interaction has fallen to a value which is less than 1% of the 
corresponding value at a distance of Rmin,ij (Figure 69). 
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Figure 69. Fall-off of the non-bonded van der Waals interaction between a pair of atoms as a function of distance. Rmin,ij is set 
to 3 Å. Values in red is the relative reduction in van der Waals potential compared to the value at 3 Å. At a distance of 9 Å, the 
van der Waals interaction has fallen to a value which is less than 1% of the corresponding value at a distance of 3 Å. 

A common approach to deal with the non-bonded interactions is to use a non-bonded cut-off and to apply the 
minimum image convention. When a cut-off is applied, the interactions between all pairs of atoms that are further 
apart than the cut-off value are set to zero. In this minimum image convention, each atom interacts with at most 
one image of every other atom in the system. When periodic boundary conditions are being used, the cut-off 
should be less than half the length of the cell, because otherwise a particle could interact with its own image and 
thus interact with same atom twice (Figure 70). Depending on the size of the biomolecule and the unit cell, a cut-
off value of 10 Å or larger is recommend. 

 

Figure 70. The spherical cutoff and the minimum image convention. Left: spherical cutoff (red circle) that is smaller than half 
of the unit cell dimension. The red atom is able to interact with all atoms that are positioned within the cutoff radius (shown 
in green). Right: spherical cutoff with a radius larger than half of the initial cell dimension. This results in interactions with 
multiple images of the same atoms, as shown in black spheres. 

The cut-off distance defines the radius of the sphere containing all atoms for which the interaction with the 
originating atom is included. Therefore, when implemented as such, it is a hard limit that imposes a discontinuity 
in the potential energy and forces nearby the cut-off value, and hence may lead to truncation errors and issues 
with the total energy conservation. To circumvent this, a switching function may be used near the cut-off distance 
that smooths the van der Waals interaction to zero (Figure 71). 
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Figure 71. Van der Waals potential (red) and without (green) switching function. 

Long-range 

The electrostatic potential decays as r-1 and can therefore not be truncated at the same cut-off distance that is 
applicable for the van der Waals interactions. It is important to properly model these long-range non-bonded 
interactions, and a number of methods have been developed to account for this: 

• Ewald summation takes advantage of ideas from harmonic analysis to reduce the complexity of the non-
bonded interactions the order of O(N3/2), which is often still impractical in the case of large systems; 

• The Particle-Mesh Ewald (PME) method uses Fast Fourier Transform to bring the complexity down to the 
order of O(N logN), and this algorithm has been a staple of molecular simulation since its appearance; 

• The Smooth Particle-Mesh Ewald (SPME) improves on PME by giving a sufficiently smooth energy 
function whose derivative can be obtained analytically, which results in more realistic simulations due to 
improved energy conservation. 

2.4. Equilibration 

In MD simulations, atoms of the macromolecules and of the surrounding solvent have to undergo a relaxation 
period that usually lasts for tens or hundreds of picoseconds before the system reaches a stationary state. The 
initial nonstationary segment of the simulated trajectory is typically discarded in the calculation of equilibrium 
properties. This stage of the MD simulation is called the equilibration stage. 

Some equilibration protocols involve gradually increasing the temperature in a stepwise fashion while other more 
aggressive approaches simply use a linear temperature gradient and heat the system up to the desired 
temperature. Therefore, equilibration protocols exist in multiple flavours and it is not always straightforward to 
indicate the most optimal one, although that a gentle equilibration is often better. In Table 13, an example 
protocol is shown as a matter of illustration. 
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Table 13. Illustration of a typical equilibration protocol. Position restraints are often placed on the solute heavy atoms to 
prevent unphysical movements during the initial simulation stages. 

Stage 
Time 
(ps) 

Temperature  
(K) 

Restraints 
(kcal/mol/Å2) 

Remarks 

Minimization 1,000-10,000 steps 0 10 
In this stage, steric clashes and close contacts are 
removed by a steepest descent minimization phase that 
consists of 1,000-10,000 steps. 

Heating 5 0 → 300 10 

Atoms are assigned an initial velocity according the 
desired temperature. To prevent blow-up of the 
system, temperature (kinetic energy) is added to the 
system only gradually, for example in steps of 5 K for a 
period of 5 ps each, resulting in a heating phase that 
lasts 300 ps (5 ps * 300 ps / 5) in total. 

Relax restraints 450 300 10 → 0 
The restraints on the heavy atoms are slowly relaxed, 
going from 10 kcal/mol/Å2 to none. This relaxation is 
achieved over a total time of 450 ps. 

Equilibrate 500 300 0 
The last stage of the equilibration consists of a normal 
run at 300 K and without restraints, lasting for at least 
500 ps. 

3. Analysis 

3.1. Production run 

The optimal length of a MD production run is hard to define and depends on the size of the system and the 
timescales of the intrinsic movements one wants to investigate. Some protein folding events may occur on a 1-10 
ns timescale, while other folding events may last at least 100-1,000 ns. Also, in order to decide on the optimal 
length of a MD simulation to study the binding or unbinding event of protein-ligand complex, experimental binding 
kinetics data of the event might help on deciding. 

The output of a typical MD simulation consists of a trajectory file, which is a file containing the time-evolving 
coordinates of the MD system. Trajectories are sequential snapshots of the simulated molecular system which 
represents atomic coordinates at specific time periods. Not every timestep is recorded to a trajectory file, but 
rather at a user-defined interval which depends on the total length of the simulation and the amount of hard disk 
space that is available. In a typical run, the coordinates are saved to the trajectory file in intervals of 1-100 ps. Each 
coordinate set in the trajectory file is called a frame, hence the number of frames correspond to the number of 
coordinate sets. For example, consider a production run of 1,000 ns (which corresponds to 1 µs) with the 
coordinates saved every 100 ps, this will result in a trajectory file containing 1,000,000 ps / 100 ps = 10,000 
coordinate sets or frames. 

3.2. Common analysis methods 

Visualization 

The visualization of the movements of the system is extremely useful, and many software visualization tools have 
been developed to achieve this goal. Two of these are open-source and provide tools to generate high-quality 
movies of these movements: 

• VMD (Visual Molecular Dynamics) is a product of the Group of Theoretical Biophysics from the University 
of Illinois (http://www.ks.uiuc.edu/Research/vmd/). It was developed specially for visualization and 
analysis of such biological systems as proteins, nucleic acids, and molecular systems on the basis of lipids 
(for example, components of cell membranes). The program compatible with the PDB format and allows 
user to use various methods of visualization and colouring molecules. VMD is suitable for animation and 
analysis of phase trajectories obtained from MD simulation. 

• PyMol (https://github.com/schrodinger/pymol-open-source) is a molecular visualization system created 
by Warren DeLano. It is user-sponsored, open-source software, released under the Python License. 
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PyMOL can produce high-quality 3D images of small molecules and biological macromolecules, such as 
proteins. The Py part of the software's name refers to that it extends, and is extensible by, the 
programming language Python. 

Root-mean square deviation (RMSD) 

For each timepoint, the RMSD measures the deviation of the molecule relative to a reference set of coordinates, 
which is typically the first frame of the trajectory. In order to calculate the deviation, the atom coordinates of all 
frames are first aligned onto the corresponding coordinates of the first frame, and then the RMSD at each 
timepoint is calculated: 
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in which N being the number of atoms that are used in the RMSD calculation at timepoint t (this could be all atoms, 
the heavy atoms, backbone atoms, the Ca atoms, or any other subset of atoms), 𝑟*||⃗ (𝑡) the coordinate of atom i at 
timepoint t, and 𝑟*,3/P|||||||||⃗  the coordinate of the corresponding atom in the reference set. 

The RMSD calculation is useful for judging overall motions and equilibration progress, as the RMSD typically first 
increases and then equilibrates to a steady-state (Figure 72). The x-coordinate (abscise) of a RMSD plot is typically 
the simulation time. 

 

Figure 72. Left: RMSD calculated on the Ca atoms for the PREP protein after fitting the Ca atoms onto those of the first frame. 
RMSD starts at 0 nm (first frame) and levels out at approximately 0.30 nm. Right: RMSD calculated on atoms of the ligand 
after fitting the Ca atoms onto those of the first frame. The RMSD of the ligand is much larger (with a maximum of 
approximately 5.5 nm) compared to the Ca atoms, indicating a larger flexibility and motion. 

Root-mean square fluctuation (RMSF) 

For each atom, the RMSF measures the fluctuations about a point over an entire simulation, after first aligning the 
atom coordinates of all frames onto the corresponding coordinates of the first frame: 
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with T being the total number of frames, 𝑟*||⃗ (𝑡) the coordinate of atom i at frame t, and 𝑟*,3/P|||||||||⃗  the coordinate of the 
corresponding atom in the reference set. 
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The RMSF is useful for judging which areas of the protein are dynamic or static (Figure 73). 

 

Figure 73. Illustration of a RMSF plot calculated from a 500 ns MD simulation of the PREP protein. The x-axis shows the atom 
indices of the Ca-carbons of the protein, and the y-axis shows the corresponding calculated RMSF after fitting all frames onto 
the first frame. 

Solvent-accessible surface area (SASA) 

The SASA measures the variation of the solvent-accessible surface area of the protein as a function of simulation 
time, providing information about potential folding or unfolding processes (Figure 74): 

 

Figure 74. Plot of the SASA as a function of time calculated from a 500 ns MD simulation of the PREP protein. The total SASA 
(in nm2) is given on the y-axis, and the time (in ps) is given on the x-axis. 

Radius of gyration (ROG) 

The radius of gyration is the root mean square distance of the protein atoms parts from the molecule’s center of 
mass: 
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with N being the number of atoms in the protein, 𝑟*||⃗ (𝑡) the coordinate of atom i at time t, and 𝑟8/"'||||||||||⃗ (𝑡) the mean 
coordinate of all atoms at time t. The larger the value, the ‘larger’ the molecule. Just like the SASA, the ROG also 
provides information about potential folding or unfolding processes (Figure 75): 

 

Figure 75. Plot of the ROG as a function of time calculated from a 500 ns MD simulation of the PREP protein. The total ROG 
(in nm) is given on the y-axis, and the time (in ps) is given on the x-axis. One can see that the protein shows a little ‘shrinking 
around 50,000 ps (50 ns), and then returns to its normal size. 

 

 
 






