Molecular mechanics and dynamics

Molecular mechanics

- Force fields
- Energy minimization
- Conformational analysis
- Conformational searching
- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Molecular dynamics

- Newton's 2nd Law of Motion
- Running a simulation
- Analysis
- Applications

Force field

$$E_{total} = E_{bonded} + E_{nonbonded}$$

$$E_{bonded} = E_{bonds} + E_{angles} + E_{dihedrals}$$
$$E_{nonbonded} = E_{electrostatic} + E_{vdw}$$

$$E_{bonded} = E_{bonds} + E_{angles} + E_{dihedrals}$$

$$k = \sum_{allbonds} k(b-b_0)^2$$

$$k = \sum_{allbonds} k(b-b_0)^2$$

2.50

Bond stretching

Torsion example

$$k\big(1+\cos(n\phi-\delta)\big)$$

	<i>k</i> (kcal/mol)	n	δ (degrees)
Torsion 1	2.2	1	-90
Torsion 2	2.3	3	+90

Gromos 54A6 parameters

atom_i 2 (charge: -0.28)

atom_j 1 (charge: +0.22)

V

 \checkmark

$$E_{nonbonded} = E_{electrostatic} + E_{vdw}$$

$$\underset{atom_i}{atom_i} \underbrace{0 \qquad \checkmark}_{atom_i} \underbrace{0 \qquad \checkmark}_{atom_i} \underbrace{1 \qquad \longleftrightarrow}_{atom_i} \underbrace{1 \qquad \longleftrightarrow}_{atom_i}$$

Converting 2D to 3D

Distance geometry approach in RDKit:

- 1. The molecule's distance bounds matrix is calculated based on the connection table and a set of rules.
- 2. The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.
- 3. A random distance matrix that satisfies the bounds matrix is generated.
- 4. This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).
- 5. The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.
- 6. Finally, a **minimization step** removes energetically unfavorable conformations

Distance matrix with lower and upper distances

MIN	0	1	2	3
0	0	1.5	3.6	3.6
1	1.5	0	1.5	3.6
2	3.6	1.5	0	1.5
3	3.6	3.6	1.5	0

MAX	0	1	2	3
0	0	1.5	3.0	4.5
1	1.5	0	1.5	3.0
2	3.0	1.5	0	1.5
3	4.5	3.0	1.5	0

Each bond length is 1.5 Å VDW radius of each atom is 1.8 Å

LIMITS	0	1	2	3
0	0	1.5	3.0/3.6	3.6/4.5
1	1.5	0	1.5	3.0/3.6
2	3.0/3.6	1.5	0	1.5
3	3.6/4.5	3.0/3.6	1.5	0

Energy minimzation

Torsion angle

Steepest descent versus conjugate gradient method for energy minimization

Initial minimization (gradient < 1 kcal/A2)

Method	CPU time(s)	Number of iterations
Steepest descent	67	98
Conjugate gradients	149	213

Stringent minimization (gradient < 0.1 kcal/A2)

Method	CPU time(s)	Number of iterations
Steepest descent	1,405	1,893
Conjugate gradients	257	367

Conformational analysis

- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Conformational analysis

- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Systematic search: looping over all torsions

- Rotate torsion **D** from 0° to 360° in steps of 10°
 - Rotate torsion **C** from 0° to 360° in steps of 10°
 - Rotate torsion **B** from 0° to 360° in steps of 10°
 - Rotate torsion A from 0° to 360° in steps of 10°

CALCULATE ENERGY

Systematic search

Number of torsions

Angle increment	5	10	20	40
30	1	9.1 x 10 ⁵	2.1 x 10 ¹⁷	3.2 x 10 ³⁹
15	3.2 x 10 ¹	9.1 x 10 ⁸	2.2 x 10 ²³	3.5 x 10 ⁵¹
8	7.4 x 10 ²	5.0 x 10 ¹¹	6.5 x 10 ²⁹	2.9 x 10 ⁶²
4	2.4 x 10 ⁴	5.0 x 10 ¹⁴	6.8 x 10 ³⁵	3.2 x 10 ⁷²
2	7.6 x 10 ⁵	5.3 x 10 ¹⁷	7.1 x 10 ⁴⁰	3.5 x 10 ⁸⁶

Conformational analysis

- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Metropolis Monte Carlo

Conformational analysis

- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Genetic Algorithm

Initial population represented by chromosomes and genes

Five phases

- Initial population
- Fitness function
- Selection
- Crossover
- Mutation

Crossover and mutation

Molecular mechanics and dynamics

Molecular mechanics

- Force fields
- Energy minimization
- Conformational analysis
- Conformational searching
- Thermodynamic *versus* kinetics
- Systematic search
- Monte Carlo
- Genetic algorithm

Molecular dynamics

- Newton's 2nd Law of Motion
- Running a simulation
- Analysis
- Applications

Popular MD packages

- Gromacs
- <u>Amber</u>
- <u>NAMD</u>

Different steps in a MD simulation

- 1. Calculation of the force on each atom, using the force field parameters
- 2. Calculation of the acceleration on each atom, using the forces from step 1
- 3. Repositioning of each atom according the acceleration from step 2
- 4. Repeat, or stop

Step 1: calculation of the force on each atom

$$F = -\nabla V(\vec{r})$$

Bonds:
$$F_b = -2k(b - b_0)$$

Angles:
$$F_a = -2k(\theta - \theta_0)$$

Dihedrals:
$$F_d = kn \sin(n\phi - \delta)$$

Electrostatics:
$$F_e = \frac{q_i q_j}{Dkr_{ij}^2}$$

-12 $\epsilon_{ij}R^6_{min\,ij}(r_{ij}^6 - R_{min\,ij}^6)$

/DW:
$$F_{vdw} = \frac{-12\epsilon_{ij}\kappa_{min,ij}(r_{ij} - \kappa_{min,ij})}{r_{ij}^{13}}$$

Forces on the bonds: $F_b = -2k(b - b_0)$

Forces on the torsion angles: $F_d = kn \sin(n\phi - \delta)$

Step 2: calculate the acceleration on each atom

$$\vec{a}_i = \frac{\vec{F}_i}{m_i}$$

 \vec{F}_i was calculated in step 1

Step 3: repositioning of each atom according the acceleration from step 2

Method 1: Verlet algorithm:

 $r(t + \delta t) = 2r(t) + \delta t^2 a(t) - r(t - \delta t)$

Method 2: Leap-frog algorithm:

 $r(t + \delta t) = r(t) + \delta t v(t + \frac{1}{2}\delta t)$ $v(t + \frac{1}{2}\delta t) = v(t - \frac{1}{2}\delta t) + \delta t a(t)$

Choosing an appropriate timestep

Running a simulation: setting up the protein and environment (part 1)

- Obtaining protein coordinates
 - <a>Protein databank (PDB)
- Add missing loops
 - ModLoop
 - <u>RAPPER</u>
 - GalaxyWEB
 - <u>ArchPRED</u>
 - <u>RCD+</u>
 - <u>ROSIE</u>

Running a simulation: setting up the protein and environment (part 2)

- Make sure the protein is in its correct protonation state
 - Karlsberg+
 - <u>H++</u>
 - PDB2PQR
- Asn, Gln, His flips
 - MolProbity

Running a simulation: setting up the protein and environment (part 3)

• Periodic boundary conditions

• Different box shapes

Running a simulation: setting up the protein and environment (part 4)

• Adding water and counterions

• Example box

Running a simulation: maintaining T and P

- Canonical ensemble
 - NVT constant
- Isothermal-isobaric ensemble
 - NPT constant

Short- and longe-range interactions

Flow of a typical MD run

- Time:
 1,000-10,000 steps
- Temperature:
 0 K
- Restraints:
 10 kcal/mol/A²

- Heating:
 Time: 5 ps
 Temperature: 0 → 300 K
 Restraints:
 - 10 kcal/mol/A²

MD analysis: visualisation

PyMol

<u>VMD</u>

Applications of MD

- Protein dynamics and protein folding
 - RMSD, RMSF, ROG, SASA, ...
 - Case study: design of modified oligonucleotides as antisense therapeutics
- Study of protein-ligand complexes, binding events, affinities
 - Case study: design of novel inhibitors of PRCP with umbrella sampling
 - Case study: investigating the location of binding of NPD to LCMT with GaMD absolute binding free energy calculations (ABFE)

MD analysis: root-mean-square deviation (RMSD)

$$RMSD(t) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\vec{r}_i(t) - \vec{r_{i,ref}})^2}$$

MD analysis: root-mean-square fluctuation (RMSF)

$$RMSF(i) = \sqrt{\frac{1}{T} \sum_{i=1}^{T} (\vec{r}_i(t) - \vec{r_{i,ref}})^2}$$

MD analysis: solvent-accessible surface area (SASA)

MD analysis: radius of gyration (ROG)

$$ROG(t) = \frac{1}{N} \sum_{i=1}^{N} (\vec{r}_i(t) - \vec{r_{mean}}(t))^2$$

Applications of MD

- Protein dynamics and protein folding
 - RMSD, RMSF, ROG, SASA, ...
 - Case study: design of modified oligonucleotides as antisense therapeutics
- Study of protein-ligand complexes, binding events, affinities
 - Case study: design of novel inhibitors of PRCP with umbrella sampling
 - Case study: investigating the location of binding of NPD to LCMT with GaMD absolute binding free energy calculations (ABFE)

Antisense oligonucleotides

nucleic acids with six-membered sugar unit

Applications of MD

- Protein dynamics and protein folding
 - RMSD, RMSF, ROG, SASA, ...
 - Case study: design of modified oligonucleotides as antisense therapeutics
- Study of protein-ligand complexes, binding events, affinities
 - Case study: design of novel inhibitors of PRCP with umbrella sampling
 - Case study: investigating the location of binding of NPD to LCMT with GaMD absolute binding free energy calculations (ABFE)

Applications of MD

- Protein dynamics and protein folding
 - RMSD, RMSF, ROG, SASA, ...
 - Case study: design of modified oligonucleotides as antisense therapeutics
- Study of protein-ligand complexes, binding events, affinities
 - Case study: design of novel inhibitors of PRCP with umbrella sampling
 - Case study: investigating the location of binding of NPD to LCMT with GaMD absolute binding free energy calculations (ABFE)

Where does NPD bind?

- LiGaMD simulations:
 - 25 independent runs, 4 µs accumulated
 - Each run started with NPD positioned randomly in the solvent, SAH positioned in its pocket
- Results:

SAH NPD

Miao & McCammon (2017) 'Gaussian accelerated molecular dynamics: Theory, implementation, and applications', *Annu. Rep. Comput. Chem.* **13**, 231-278.

Absolute binding free energy calculations

 $\Delta G_{sol} = \Delta G_Q + \Delta G_W + \Delta G_{analytic}$ $\Delta G_{protein} = \Delta G_R + \Delta G_{Q+} \Delta G_R$

$$\Delta\Delta G_b = \Delta G_{sol} - \Delta G_{protein}$$

Results

System	$\Delta\Delta G_{b}$ (kcal/mol)	ΔG_{sol} (kcal/mol)			$\Delta G_{\text{protein}}$ (kcal/mol)		
		ΔG_Q	ΔG_W	$\Delta G_{analytic}$	ΔG_R	ΔG_Q	ΔG_W
NPD in NPD1 pocket (no SAH)	-4.5 ± 0.5	+95.74 ± 0.02	-0.03 ± 0.05	+8.88	+1.75 ± 0.11	+93.61 ± 0.12	+13.76 ± 0.51
NPD in NPD1 pocket (with SAH in SAH pocket)	-5.3 ± 1.4	+95.74 ± 0.02	-0.03 ± 0.05	+10.65	+2.30 ± 0.99	+95.15 ± 0.57	+14.17 ± 0.73
NPD in NPD2 pocket (no SAH)	-5.0 ± 1.0	+95.74 ± 0.02	-0.03 ± 0.05	+8.66	+2.10 ± 0.04	+93.14 ± 0.35	+14.12 ± 0.90
NPD in NPD2 pocket (with SAH in SAH pocket)	-1.8 ± 0.7	+95.74 ± 0.02	-0.03 ± 0.05	+9.46	+2.08 ± 0.07	+93.96 ± 0.22	+10.89 ± 0.60
NPD in SAH pocket (no SAH)	-2.8 ± 1.8	+95.74 ± 0.02	-0.03 ± 0.05	+9.90	+5.44 ± 1.76	+91.67 ± 0.23	+11.32 ± 0.35
SAH in SAH pocket (no NPD)	-102.2 ± 1.7	+216.52 ± 0.31	+3.31 ± 0.07	+10.42	+1.74 ± 0.04	+309.01 ± 0.84	+21.72 ± 1.45
SAH in SAH pocket (with NPD in NPD1 pocket)	-19.9 ± 1.7	+216.52 ± 0.31	+3.31 ± 0.07	+11.03	+1.49 ± 0.10	+228.73 ± 0.47	+20.57 ± 1.60
SAH in SAH pocket (with NPD in NPD2 pocket)	-22.2 ± 1.3	+216.52 ± 0.31	+3.31 ± 0.07	+10.79	+2.01 ± 0.11	+230.41 ± 1.06	+20.39 ± 0.74

Overview video

 <u>https://www.youtube.com/watch?v=OjV90WVJj2M</u> (or molecular-dynamics.mp4 on BB)