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ABSTRACT: We present a user-friendly front-end for running molecular
dynamics (MD) simulations using the OpenMM toolkit on the Google
Colab framework. Our goals are (1) to highlight the usage of a cloud-
computing scheme for educational purposes for a hands-on approach when
learning MD simulations and (2) to exemplify how low-income research
groups can perform MD simulations in the microsecond time scale. We
hope this work facilitates teaching and learning of molecular simulation
throughout the community.

■ INTRODUCTION

Reliable structural depictions of biomolecules are essential for
understanding how the natural world works.1 Experimental
techniques for obtaining such structures are mainly repre-
sented by X-ray crystallography, nuclear magnetic resonance
spectroscopy, and cryo-electron microscopy, with the latter
facing an explosive increase in application.2,3 In addition,
computational methods for biomolecular modeling (partic-
ularly proteins) have reached an unprecedented quality, with
AlphaFold24 and RoseTTAFold5 being the most recent
examples. All of these advances, combined with the availability
of the human structural proteome,6 have ushered in the
demand for dynamical, time-dependent methods for biological
structure analysis that are essential for holistic inspections of
protein function in the organism-level context.7,8

Molecular dynamics (MD) simulations, a classic physics
approximation for describing atomic trajectories, is widespread
among the methods for describing biomolecular motion.9,10

These simulations, however, require progressively more
computation power, and efforts are increasing to allow massive
runs of MD.10 Thus, one alternative to in-house computing
facilities is the use of cloud computing for molecular modeling
projects, especially due to its scalability, reliability, and lower
costs.11 However, the use of cloud computing requires from
the user the ability to perform technical or tedious tasks, such
as configuring remote computer nodes, installing the required
software under specific conditions, and running calculations
(by launching, monitoring, and terminating them).12 Some
propositions for facilitating the use of cloud computing for MD
simulations have been made, including variations on
AMBER,13 CHARMM-GUI,14 QwikMD,15 and NAMD.16 All
these implementations, however, leave some intermediate tasks
to be performed or need to be set up on a cloud structure by
the end user. An exception is described by Engelberger et al.17

who reported a collection of Jupyter notebooks for educational

purposes that performs phylogenetic analysis, molecular
modeling, molecular docking, molecular dynamics, and
coevolutionary analysis. Although those protocols were not
focused on MD calculations, they greatly inspired the present
work.
Considering the ever-growing need for faster, affordable

computer resources for novice users, here we present a user-
friendly front-end for running molecular dynamics simulations
using OpenMM toolkit18 on the Google Colab framework.19,20

For educational purposes, the user is only required to provide
minimal input files, such as an initial biomolecular tridimen-
sional structure (a PDB file), and the following MD simulation
tasks are facilitated from thereon. Usual simulation analyses
(e.g., RMSD, RMSF, PCA) are also implemented in an
automated fashion. Despite its click-and-go appeal, the
protocols presented here can be customized for other specific
cases, while also allowing students to have a hands-on
approach when learning MD simulations.

■ GOOGLE COLAB FRAMEWORK AND MD
SIMULATIONS

The Google Colaboratory, or Colab for short, is a product
from the Google Research organization.19,20 According to their
own website,19 “Colab allows anybody to write and execute
arbitrary python code through the browser, and is especially
well suited to machine learning, data analysis and education.”
In practice, Colab uses virtual machines to execute Jupyter
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notebook codes on its server using GPUs, and each notebook
connection (a session) can run up to 12 h in the Colab free
version, while the Colab paid version (Colab Pro) has a time
limit of 24 h per session. Currently, only the United States,
Canada, Japan, Brazil, Germany, France, India, United
Kingdom, and Thailand have access to Colab Pro. Moreover,
Colab is equipped with Nvidia K80, T4, P4, and P100 GPUs,
and Colab Pro users have access to their fastest GPUs.
In terms of MD simulation, trajectories files can be very

large and proper storage space is a fundamental feature for
computational resources. While the temporary storage system
can be limited when connected to a Colab computing node,
users are allowed to mount their personal Google Drive
account, so all output files are directly written to a more
permanent storage system. Conversely, users can also use the
Google Drive system to upload input files that can be used in
their notebooks, which gives much flexibility to Colab
computational structure. The Google Drive free version allows
users to store up to 15 GB of data, while paid versions can
store more than 2 TB of data.

Understanding the potential use of such a computing
environment and the educational importance of introducing
MD simulation concepts to new users, we combined the
Google Colab framework and the OpenMM MD toolkit18 in
order to create notebooks containing entire workflows for MD
simulations. Here, we report three notebooks (Figure 1): (A)
exemplifying a complete pipeline for MD simulations, from
structure preparation to MD simulation and basic analyses; (B)
running MD simulations using input files imported from a
Google Drive folder; and (C) combining molecular modeling
techniques and MD simulations.

General Notebook Structures. All workflows presented
here follow the Jupyter Notebook structure21 and have two
initial configuration steps that should take less than 7 minutes.
The first step is for software and dependency installation,
which includes the OpenMM engine,18 MDanalysis,22

PyTraj,23 Numpy,24 Ambertools,25 and others. The second
step is the mounting of the user’s Google Drive file system in
order to store output files. The remaining tasks are the usual
ones observed in any MD simulation protocol, namely,

Figure 1.Workflow of the three presented Jupyter notebooks. Blue boxes are configuration steps required by the Colab environment, red boxes are
actual MD related tasks, and yellow boxes represent tasks that are external to the Jupyter notebook. During every MD related task, output files are
directly written at the user’s Google Drive storage file system.
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topology generation, solvation and neutralization of a
simulation box, equilibration run, production run, and
trajectories analyses. Users are allowed to modify the
OpenMM code to adapt each of these steps as needed.
The main difference between the three notebooks presented

here is the origin of the input file (i.e., the solute molecule).
Notebook A was designed to fetch a protein structure directly
from the Protein Data Bank and to create its topology using
AmberTools along with the actual simulation box itself
containing solvent and neutralizing ions. Notebook B was
designed to show how users can provide their own input files
for the OpenMM engine via the Google Drive storage system.
As demonstrated, inputs generated by the CHARMM-GUI14

server can be easily uploaded to a Google Drive folder,
allowing the user to use them to start a simulation. Moreover,
notebook C was designed to demonstrate how molecular
modeling techniques and MD simulations can be combined to
generate structurally relevant information. In this case, we
combined our MD notebook with the AlphaFold2 algorithm
that was recently ported to Google Colab.4,26 Together, these
protocols are meant to cover most of the basic needs of MD
approaches.
Usage Examples. In order to show the feasibility of using

such a cloud-based computational resource for research
purposes, we carried out a 1 μs long simulation of lysozyme
using the Amber FF19sb force field in explicit OPC water,
totalizing 26 033 atoms in the simulation box. For this, we used
a Colab Pro version, which allowed us to use P100 GPUs to
yield an average simulation speed of ≈230 ns/day. Due to the
limiting 12/24 h job limit in Colab, jobs are expected to be
terminated when they reach that time. In order to circumvent
that limitation, we divided the entire trajectory in 50 strides of
20 ns each. At the end of each stride, OpenMM generates a .rst
state file containing all atom’s positions and velocities, which
are read at the beginning of the next stride. All these steps can
be easily defined by the user in all notebooks reported here and
restart routines are automatically set up. Thus, in order to
complete our 1 μs trajectory, we simply ran notebook A 5
times, which took us 6 days of work. Structural analyses of our
lysozyme simulation are shown in Figure S1.

■ APPLICABILITY

The approach shown here is specially suited for educational
purposes. Professors can share the notebook with students and
each one can run an entire MD simulation, from system
preparation to production runs and analyses in 1 day. Such
hands-on classes do not require local compilation of MD
software since all dependencies are installed directly at the
computing node via an Anaconda module. The usage of the
OpenMM engine and its well-known compatibility with GPU
processing is especially well-suited for the Colab computing
infrastructure.
Another benefit is that students are not required to have

much previous computational background. In fact, using the
notebooks presented here would require only a Google Drive
account for each student and the appropriate storage space on
it. An important feature we made sure was present is that the
structure/trajectory visualization is embedded in the note-
books. Students can also choose to see, study, and edit the
OpenMM code behind each task.
Moreover, considering that we were able to use the Colab

structure to produce 1 μs long MD simulations at a relatively
low cost, this approach could be used for underprivileged
investigators around the world to conduct their research. In
order to demonstrate this, we evaluated both the Pro and Free
versions of Google Colab in terms of MD simulation speed of
SARS-CoV-2 protein systems of different sizes, namely PDB
ID 7CI3 (18K atoms), 6ZCT (25K atoms), 7AEH (46K
atoms), 6VYO (66K atoms), and 7BTF (195 K atoms). For
these simulations, we solvated the systems using an explicit
OPC water model and used a time step of 2 fs for production
simulations. We used a Tesla T4 GPU for our Free version
calculations and a Tesla P100-PCIE GPU for our Pro
calculations. Performances for each system are shown in
Figure 2. Assuming no data loss due to resubmissions and only
one active session per user, one could produce nearly 1 μs long
trajectories for systems with ≈200 K using the Pro version for
≈1 month. A cost-free alternative would require ≈50 days for
the same system. Despite the necessity of resubmitting a job
1−2 times a day, we believe useful research can be done using
this approach.

Figure 2. Simulation speed of multiple systems using the Colab Pro (magenta) and Free (green) versions. Fully solvated systems simulated, from
left to right: PDB ID 7BTF (195K atoms), 6VYO (66K atoms), 7AEH (46K atoms), 6ZCT (25K atoms), and 7CI3 (18K atoms).
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During the revision of this manuscript, it came to our
attention that Google Colab has implemented a few changes in
its usage policies. For instance, the Free version now has a
captcha button that randomly pops up after some time to
ensure that free users are in fact actively using the framework
and not just running calculations in the background. Also, a
Pro+ version was released, allowing better GPU allocation and
the feature of maintaining calculations running on Colab even
if a session is disconnected.
As a general suggestion to take the most out of the Colab

framework, users that struggle with disconnections or low
simulation speed can increase the number of strides (and,
consequently, lower the stride time), so the .rst state files are
written more frequently and users will lose only a short amount
of simulation time in cases of disconnection.

■ CONCLUSIONS
Here, we present an affordable (cost-free) strategy for
performing molecular dynamics simulations using cloud
computing resources. It involves shareable, ready-to-use,
customizable Jupyter notebooks that guide the end-user in
running their calculations using Google Colab services. We
hope this work facilitates teaching and learning of molecular
simulations, as well as allowing for low-income research groups
to perform MD in the microsecond time scale.

■ DATA AND SOFTWARE AVAILABILITY
All Colab notebooks presented here are freely and publicly
available at https://pablo-arantes.github.io/making-it-rain/.
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Structural analyses of 1 μs MD simulations using PyTraj
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