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Highlights
AI has enormous potential to revolution-
ize drug discovery.

Computational prediction of atomic and
molecular properties is the foundation of
most de novo design strategies.

Machine learning, a branch of AI, can
now predict the physical and chemical
properties of small molecules at quan-
Drug discovery and development are among the most important translational
science activities that contribute to human health and wellbeing. However, the
development of a new drug is a very complex, expensive, and long process
which typically costs 2.6 billion USD and takes 12 years on average. How to
decrease the costs and speed up new drug discovery has become a challenging
and urgent question in industry. Artificial intelligence (AI) combined with new ex-
perimental technologies is expected to make the hunt for new pharmaceuticals
quicker, cheaper, and more effective. We discuss here emerging applications
of AI to improve the drug discovery process.
tum mechanics-level accuracy with
much lower time-cost.

AI is also able to search for correlations
between molecular representations and
biological and toxicological activities.

AI-based algorithms are also being de-
veloped to efficiently probe the pathways
of synthesis of novel drug candidates.

In combination with robotic platforms,
the chemical space for novel reactions
can be explored by learning from auto-
mated analysis of reaction feasibility.
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Drug Discovery and AI
Drug discovery is a long and complex process that can be broadly divided into four major stages:
(i) target selection and validation; (ii) compound screening and lead optimization; (iii) preclinical
studies; and (iv) clinical trials. First, the target related to a specific disease needs to be identified.
This requires cellular and genetic target evaluation, genomic and proteomic analysis, and bioinfor-
matic predictions. The next step is hit identification, where compounds are identified frommolec-
ular libraries by using methods such as combinatorial chemistry, high-throughput screening, and
virtual screening (Figure 1, Key Figure). Structure–activity and in silico studies in combination with
cellular functional tests are used in an iterative cycle to improve the functional properties of newly
synthesized drug candidates. Subsequently, in vivo studies such as pharmacokinetic investiga-
tions and toxicity tests are performed in animal models (Figure 1). Finally, the drug candidate,
which has now successfully passed all preclinical tests, is administered to patients in a clinical
trial. This step is marked by three phases that the drug needs to get through sequentially.
Phase I, drug safety testing with a small number of human subjects; Phase II, drug efficacy testing
with a small number of people affected by the targeted disease; and Phase III, efficacy studies
with a larger number of patients. If the safety and efficacy of the drug candidate are confirmed
in the clinical phases, the compound is reviewed by agencies such as the FDA for approval
and commercialization. It has been estimated that the average cost of a traditional drug discovery
pipeline is 2.6 billion USD, and a complete traditional workflow can take over 12 yearsi.

How to decrease the costs and speed up projects are central questions for all pharmaceutical
companies. AI-based methods (Box 1) are increasingly being used in various stages of the pro-
cess to improve time- and cost-efficiency. These include the use of AI in real-time image-based
cell sorting [1], cell classification [2], quantum mechanics (QM, see Glossary) calculation of
compound properties [3], computer-aided organic synthesis [4,5], designing new molecules
[6], developing assays, predicting the 3D structures of target proteins, and many others [7–10].
In general, these processes are somewhat tedious to perform and can, with the help of AI, be
automated and optimized to substantially speed up the R&D drug discovery process. We review
below the different subareas of the drug discovery process which have benefitted from incorpo-
rating AI.
592 Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 https://doi.org/10.1016/j.tips.2019.06.004

© 2019 Elsevier Ltd. All rights reserved.

shuguang.yuan@gmail.com
https://doi.org/10.1016/j.tips.2019.06.004
https://doi.org/10.1016/j.tips.2019.06.004
https://doi.org/10.1016/j.tips.2019.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tips.2019.06.004&domain=pdf


Glossary
Coulomb Matrix: a simple global
descriptor which mimics the
electrostatic interaction between nuclei.
Graph convolutional network: a
generalized neural network model that
works on arbitrarily structured graphs. A
graph refers to a mathematical
description of nodes and edges. A node
can be an element with dedicated
attributes or properties, whereas an
edge describes the relationship and
connections between any two nodes.
Homologymodeling: the construction
of an atomic-resolution 3D structural
model of the ‘target’ protein, derived
from its primary sequence, based on an
experimental 3D structure of a
homologous protein whose structure
has been resolved by NMR, X-ray, or
cryo-electron microscopy.
Latent vector space (LVS): a hidden
layer in a neural network to which the
inputs are mapped before the last
output. The layer represents data in
vector form instead of discrete numbers.
Least-square support vector
machine (LS-SVM): least-square
versions of support vector machines. A
set of linear equations are solved,
instead of the convex quadratic
programming (QP) used by classical
support vector machines.
Molecular dynamics (MD)
simulation: a computational method to
simulate the function of a molecular
system under physiological conditions.
These simulations are important tools for
understanding the physical basis of the
structure and function of biological
macromolecules.
Molecular fingerprint: a vector that
contains binary elements (e.g., 0 or 1),
where each element corresponds to the
existence (i.e., 1) or the absence (i.e., 0)
of a chemical feature.
Molecular mechanics (MM): uses
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Figure 1. The drug discovery process comprises several major steps that include identifying compounds by screening
compound collections via primary assays, such as high through-put screening in vitro, and secondary assays that include
counter-screens and ADMET (absorption, distribution, metabolism, excretion, and toxicity) studies. Structure–activity
relationship (SAR) and in silico studies in combination with cellular functional tests are used in an iterative cycle to improve
the functional properties of the drug candidates. New drug candidates with desired characteristics are synthesized via
organic synthesis. The selected drug candidate which has now passed all preclinical tests successfully is given to human
patients in a clinical trial.
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classical mechanics to model molecular
AI for Primary Drug Screening

Sorting and Classification of Cells by Image Analysis Using AI

systems. The Born–Oppenheimer
approximation is assumed to be valid

and the potential energy of all systems is
calculated as a function of the nuclear
coordinates by using force fields.
Potential energy: the energy of on
object by virtue of its position relative to
other objects. Potential energy is often
associated with restoring forces such as
a spring or the force of gravity.
Principal component analysis
(PCA): a statistical procedure that uses
orthogonal transformation to convert a
set of observations of possibly
AI technology has been very successful in recognizing images containing distinct objects or
features [11,12]. Recognizing images by traditional visual inspection is a very tedious task and be-
comes very inefficient for the analysis of big data. Hence, this is an ideal field for the application of
AI-based computing technologies (Box 1). For cell target classification or diagnosis, the AI model
needs to be trained to rapidly and automatically identify the different features of cell types. For
example, to classify breast cancer cells, the cell images are segmented from the background
by varying the image contrast [1,2]. Tamura texture features and wavelet-based texture
features are then extracted, and principal component analysis (PCA) is used to reduce
the dimensions of the extracted features. AI-based methodologies are then trained to classify
different cell types. Among the tested methods, the least-square support vector machine
ical Sciences, August 2019, Vol. 40, No. 8 593
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correlated variables into a set of values of
linearly uncorrelated variables called
principal components. PCA is a useful
statistical technique that has been used
in fields including face recognition and
image compression, and is a common
technique for finding patterns in
high-dimensional data.
Quantitative structure–activity
relationship (QSAR): a predictive
statistical model that correlates
response data for molecules with
information numerically encoded in the
form of different descriptors (such as
atom numbers, numbers of rotatable
bonds, numbers of aromatic rings,
charges, etc.).
Quantum mechanics (QM): also
known as quantum physics, a science
that deals with the behavior of matter
and light at the atomic/subatomic scale.
Retrosynthesis: a computer-based
approach for the design of organic
syntheses, achieved by transforming a
target molecule into simpler precursor
molecular blocks.
Simplifiedmolecular input line-entry
system (SMILES): specification of the
chemical structure of a molecule in the
form of a line notation using short ASCII
strings.
Tamura texture features:
characteristic elements that are
perceived as textures by humans based
on psychophysical studies. These
features include coarseness, contrast,
and directionality.
Tanimoto similarity score: a statistic
for evaluating the similarity or diversity of
sample sets. It calculates the ratio of
overlapped data (i.e., the intersection of
two sample sets) to the total data
(i.e., the union of two sample sets).
Values closer to 1 indicate greater
similarity between the datasets.
Wavelet-based texture features:
typical techniques for the decomposition
and compression of images. Wavelets
calculate average intensity as well as
detailed contrast levels distributed
throughout the images.

Box 1. The Field of AI

AI machines mimic cognitive functions that are usually associated with human capabilities, such as learning and problem
solving [92]. In general, AI refers to the ability of a machine to perform tasks in response to a range of environments. To
predict outcomes related to drug discovery (task), the machine requires algorithms to process existing data (environment)
and to identify patterns of functional properties. This process is regarded as machine learning (ML) (Figure I). ML uses
algorithms that can learn and improve without reprogramming [8,91]. Deep learning (DL) is the next generation of ML that
introduces multiple layers of learning from massive datasets [79]. Of special interest in this context are AI algorithms such
as deep neural networks (DNNs). A neural network is a layer of simulated neural connectivity that generates an output in
response to input data. A DNN consists of an input layer, an output layer, and at least one or more intermediate hidden
layers. The parameters for each stage (weights) are optimized via the backpropagation algorithm, such that each interme-
diate (hidden) representation will tend to capture high- or low-level transformed features of the original data [18]. A DNN
learns to perform tasks such as image recognition by varying feature weightings in a way that minimizes the difference
between its actual output and the desired output. A DNN can be trained using a known set of data, whereas an already
trained DNN can be applied to unknown data in a task called inference. Central processing units and other digital-based
hardware accelerators are typically used for DNN computations. Recently, optical computing has received attention as
special-purpose hardware for accelerating AI algorithms such as DNNs [93].
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Figure I. Types of Artificial Intelligence (AI) and Applications. (A) Schematic showing the relationship between AI,
machine learning, and deep learning. (B) Schematic showing the diverse applications of AI in different areas.
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(LS-SVM) method, which is based on statistical learning theory using regression and classifica-
tion techniques [13], shows the highest classification accuracy (95.34%) [1,2].

For cell sorting, AI-based image analysis decision-making needs to be sufficiently rapid that
the robot has time to accurately separate different cell types in the sample. Most modern
image-activated cell sorting (IACS) devices measure optical, electrical, and mechanical cell prop-
erties for highly flexible and scalable automation of cell sorting [1,2,12]. These instruments allow
high-speed digital image processing and decision-making within a few tens of milliseconds
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using AI-based convoluted deep neural network (DNN, Box 1) algorithms. This methodology was
tested on high-content sorting of Chlamydomonas reinhardtii and human platelets, and showed
excellent specificity and sensitivity [1,2,12].

In addition to cell recognition and classification, AI has recently been used for interpretation
of computerized electrocardiography (ECG), a step that plays a crucial role in clinical diag-
nosis/treatment workflows. This has also simplified the tedious process of manual checking
by an experienced practitioner. Widely available digital ECG data and algorithmic deep
learning (DL) can substantially improve the accuracy and scalability of automated ECG anal-
ysis [14,15].

AI in Secondary Drug Screening

Predictions of Physical Properties

An important consideration in drug design is to select drug candidates that exhibit a series of
desired properties, in particular regarding bioavailability, bioactivity, and toxicity. Physical prop-
erties such as melting point and partition coefficient (logP) greatly influence the bioavailability of
a drug molecule and therefore must also be considered in the design of a new drug [16,17]. The
melting point reflects the ease of dissolution of a drug in aqueous medium, whereas logP, a
measure of relative solubility between water and oil, serves as an estimate for cellular drug
absorption. Taking these properties into consideration, molecular representations used in an
AI drug design algorithm include a molecular fingerprint, a simplified molecular input
line-entry system (SMILES) string, potential energy measurements (e.g., from ab initio
calculations), molecular graphs with varying weights for atoms or bonds, Coulomb matrices,
molecular fragments or bonds, atomic coordinates in 3D, the electron density around the mol-
ecule, or combinations thereof [18]. These inputs are used in a DNN training phase [19], and
can be processed by different DNNs in different stages, namely a generative and a predictive
stage. This procedure is able to facilitate reinforcement learning (RL) [6]. In a typical study,
the generative stage of a DNN takes SMILES inputs and is trained to produce chemically fea-
sible SMILES strings, whereas the predictive stage is trained for the properties of the molecules
[6]. Although the two stages are initially trained separately with supervised learning algorithms,
bias can be applied to the outcome when the two stages are trained jointly by rewarding or
penalizing particular properties [6].

Predictions of Bioactivity
Matched molecular pair (MMP) analysis [20] investigates a single localized change to a drug can-
didate and its impact on the molecular properties and bioactivity of the molecule. It has been
widely used for the quantitative structure–activity relationship (QSAR) studies [20]. In a typ-
ical study, MMPs are generated via retrosynthesis rules for de novo design tasks. A candidate
molecule is chemically defined with a static core plus two fragments (describing the transforma-
tion) [21]. The core and these fragments are then encoded. Finally, three machine learning (ML)
methods, namely random forest (RF) [22], gradient boosting machines (GBMs) [23], and DNNs
[24], that were previously applied without MMP, are used to extrapolate to new transformations,
fragments, and modifications of the static core. For example, these models were trained on the
IC50 data for five different kinases and a bromodomain-containing protein [25]. It was observed
that DNN had the better overall performance than RF and GBM in predicting compound activity
[25]. With the dramatic increase of public databases (such as ChEMBL and Pubchem) that
contain a large number of structure–activity relationship (SAR) analyses, MMP with ML has
been used to predict many bioactivity properties such as oral exposure [26], distribution coeffi-
cient (logD) [27,28], intrinsic clearance [29], absorption, distribution, metabolism, and excretion
(ADME) [30,31], and mode of action [32].
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 595
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Other methods have recently been developed to predict the bioactivity of drug candidates. For
example, Tristan et al. extracted a signature of the drug target site with a graph convolutional
network by encoding discrete chemicals into a continuous latent vector space (LVS) [33].
LVS permits gradient-based optimization in molecular space, which allows predictions to be
made based on differentiable models of binding affinity and other properties [33].

Prediction of Toxicity
The toxicology profile of a compound is an important parameter in drug development. Toxicity
optimization is probably the most expensive and time-consuming task in the preclinical stage
of a drug discovery project [34,35], and accurately predicting the toxicity of compounds is of
great value for drug development. The DeepTox algorithm [36] (Table 1), an ML algorithm,
gave outstanding results in the Tox21 Data Challenge [37], a contest in which the participating
Table 1. List of AI-Based Computational Tools for Drug Discovery

Tools Description Websites Refs

AlphaFold Protein 3D structure prediction https://deepmind.com/blog/alphafold ii

Chemputer A more standardized format for
reporting a chemical synthesis
procedure

https://zenodo.org/record/1481731 [66]

DeepChem A python-based AI tool for various drug
discovery task predictions

https://github.com/deepchem/deepchem [94]

DeepNeuralNet-
QSAR

Molecular activity predictions https://github.
com/Merck/DeepNeuralNet-QSAR

[95]

DeepTox Toxicity predictions www.bioinf.jku.at/research/DeepTox [36]

DeltaVina A scoring function for rescoring
protein–ligand binding affinity

https://github.
com/chengwang88/deltavina

[96]

Hit Dexter ML models for the prediction of
molecules which might respond to
biochemical assays

http://hitdexter2.zbh.uni-hamburg.de [97]

Neural Graph
Fingerprints

Property prediction of novel molecules https://github.com/HIPS/neural-fingerprint [98]

NNScore Neural network-based scoring function
for protein–ligand interactions

http://rocce-vm0.ucsd.
edu/data/sw/hosted/nnscore/

[99]

ODDT A comprehensive toolkit for use in
chemoinformatics and molecular
modeling

https://github.com/oddt/oddt [100]

ORGANIC An efficient molecular generation tool to
create molecules with desired
properties

https://github.
com/aspuru-guzik-group/ORGANIC

[101]

PotentialNet Ligand-binding affinity prediction based
on a graph convolutional neural
network (CNN)

https://pubs.acs.
org/doi/full/10.1021/acscentsci.8b00507

[102]

PPB2 Polypharmacology prediction http://ppb2.gdb.tools/ [103]

QML A Python toolkit for quantum ML www.qmlcode.org vii

REINVENT Molecular de novo design using RNN
(recurrent neural network) and RL
(reinforcement learning)

https://github.
com/MarcusOlivecrona/REINVENT

[104]

SCScore A scoring function to evaluate the
synthesis complexity of a molecule

https://github.com/connorcoley/scscore [105]

SIEVE-Score An improved method of
structure-based virtual screening via
interaction-energy-based learning

https://github.com/sekijima-lab/SIEVE-Score [106]
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groups attempted to computationally predict 12 000 environmental chemicals and drugs
for 12 different toxic effects in specifically designed assays. The DeepTox algorithm first
normalizes the chemical representations of the compounds, from which a large number of
chemical descriptors are computed and used as the input to ML methods. The descriptors
are categorized as static or dynamic. Static descriptors include atom counts, surface areas,
and the presence or absence of a predefined substructure in a compound [36]. The presence
and absence of 2500 predefined toxicophore features [38], and other chemical features
extracted from standard molecular fingerprint descriptors are also calculated. Dynamic
descriptors are calculated in a prespecified way. Despite a potentially infinite number of differ-
ent dynamic features, the algorithm keeps the dataset within manageable limits [36]. In typical
test cases, the DeepTox algorithm shows good accuracy in predicting the toxicology of
compounds [36].

AI in Drug Design

Predicting the 3D Structure of a Target Protein

The 3D structure of a target protein is of utmost importance for structure-based drug discovery
[39,40] because new drug molecules are generally designed according to the 3D chemical
environment of the ligand-binding site of a target protein. Homology modeling and de novo
protein design have traditionally been applied for this purpose [41–43]. However, with the de-
velopment of AI-based tools, predicting the 3D structure of a target protein has become more
accurate and sophisticated. In the recent Critical Assessment of Protein Structure Prediction
contest, the AI tool AlphaFoldii (Table 1) was used to predict the 3D structure of a drug target
protein and performed amazingly well. Using only protein primary sequences, AlphaFold accu-
rately predicted 25 of 43 structures. These results were significantly better than the second-
place contester, which correctly predicted only three of 43 test sequencesii. AlphaFold relies
on DNNs that are trained to predict properties of a protein from its primary sequenceii. It
predicts both the distances between pairs of amino acids and the φ–ψ angles between neigh-
boring peptide bonds. These two probabilities are then combined into a score which is used to
estimate the accuracy of a proposed 3D protein structure model. Using these scoring func-
tions, AlphaFold explores the protein structure landscape to find structures which match
predictionsi.

Predicting Drug–Protein Interactions
QM or QM/molecular mechanics (MM) hybrid methods are useful for predicting protein–ligand
(drug) interactions in drug discovery [44,45]. These methods consider quantum effects for the
simulated system (or the region of interest in the case of QM/MM) at the atomic level, therefore
offering much better accuracy than classical MM methods. Because MM methods only apply
simple energy functions based on atomic coordinates, the time-cost for QM-based methods is
much larger than for MM methods [46,47]. The application of AI methods to QM calculations
therefore involves a tradeoff between the accuracy of QM and the favorable time-cost of MM
models [48]. AI models have been trained to reproduce QM energies from atomic coordinates,
and can achieve the calculation speed of MMmethods. AI is principally applied to atomic simula-
tions and predictions of electrical properties, whereas DL has been used to predict the potential
energies of small molecules, thereby replacing computationally demanding quantum chemistry
calculations by a fast ML method [48]. For large datasets, quantum chemistry-derived DFT
(density functional theory) potential energies have been calculated and used to train DNNs. For
example, in a study of two million elpasolite crystals, the accuracy of a ML model improved
with increasing sample size and reached 0.1 eV/atom for DFT formation energies trained on
10 000 structures. The model was then used for screening compositional alternatives for various
properties [49].
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 597
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Planning Chemical Synthesis with AI

Retrosynthesis Pathway Prediction

Retrosynthesis is a sophisticated method for designing organic synthesis. With the development
of AI, this task can be performed much more efficiently [50–53]. Once a molecule has been virtu-
ally screened for its potential bioactivity and toxicology profile, the search for an optimal chemical
synthesis pathway to synthesize the drug candidate begins. This step is often challenging and
inefficient. Despite knowledge of hundreds of thousands of transformation steps, it is not guaran-
teed that novel molecules can be efficiently synthesized because of novel structural features or
conflicting reactivities [54].

Retrosynthesis analysis recursively searches for ‘backward’ reaction pathways until a set of sim-
pler, available precursor molecules are obtained [50]. Because retrosynthesis pathway predic-
tions involve sequential truncations of the target molecule at various positions, Monte Carlo tree
search (MCTS) [55] is the technique of choice for making branch decisions. Monte Carlo simula-
tions perform random search steps without branching until an optimal solution is found. Previ-
ously, algorithms for computer-assisted synthesis planning (CASP) [56,57] were developed
to assist retrosynthesis analysis, but failed to gain wide popularity among chemists. These algo-
rithms require that human knowledge is incorporated into executable programs, but formalization
of chemistry by manual encoding does not scale to exponentially growing knowledge, and the
results retrieved from reaction databases were often lacking chemical intelligence [50]. ML
approaches trained on empirical data can now be used; (i) to predict the probability of a transfor-
mation at a particular branching position, and (ii) to guide the selection of the random steps. At
each transformation step, the molecule (or an intermediate) can be linked to specific precursors
via a predefined transformation rule. AI algorithms can be trained from the literature regarding
the yields and costs of these transformation rules, and can then predict the most feasible
retrosynthesis pathway for a given molecule.

A recently reported 3N-MCTS method [50] combines three different neural networks with MCTS
to form a workflow for CASP (Figure 2). Each network is responsible for a different task: (i) an ex-
pansion node; (i) a rollout node; and (iii) an update node. In the expansion node, the algorithm
searches for new possibilities for transforming the molecule (or an intermediate) retrospectively.
It incorporates an ‘in-scope’ policy in which the feasibility of a transformation is evaluated
based on 12.4million transformation rules from the literature [58]. The neural networks are trained
to predict the best transformation for the molecule (or intermediate) at hand, and thus guide the
choice of expansion pathways. Because the literature predominantly contains positive data, a
transformation is considered less feasible if its reverse reaction is high-yielding. Moreover,
selecting high-yielding transformations also helps to rule out the possibility of side products
[50]. In the rollout node, the ‘in-scope’ policy is similar to that in the expansion node, except
that only frequently reported transformation rules are used. This strategy enables a slow and thor-
ough search for the best transformation possibilities during the expansion state, but faster evalu-
ation of position values at the rollout phase [59]. In the update node, the evaluation of a particular
pathway is incorporated into the search tree. For a molecule submitted for retrosynthesis analy-
sis, these nodes are operated iteratively to search for transformations with the highest scores,
and can eventually identify possible precursors for the full reaction pathway [50].

In addition to the identification of a reaction pathway, the time elapsed to reach a solution is also a
crucial indicator of algorithm performance. A time limit can be applied to check the percentage of
problems that an algorithm can solve. The performance of MCTS on the test set of molecules was
superior to that of other alternative algorithms. MCTS was able to solve 80% of retrosynthesis
problems when a 5 s per molecule time limit was applied [50], and the rate of solving can exceed
598 Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8
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Figure 2. Schematic of Monte Carlo Tree Search (MCTS) Methodology. (A) MCTS searches by iterating over four phases. In the selection phase (1), the most
urgent node for analysis is chosen on the basis of the current position values. In the second phase (2) this node may be expanded by processing molecules of position
A with the expansion procedure, which leads to new positions B and C being added to the tree. The most promising new position is then chosen, and a rollout phase
(3) is performed by randomly sampling transformations from the rollout policy until all molecules are solved or a specified depth is exceeded. In the update phase (4),
the position values are updated in the current branch to reflect the result of the rollout. (B) Expansion procedure. First, the molecule A for retroanalysis is converted to a
fingerprint and fed into the policy network, which returns a probability distribution over all possible transformations (T1 to Tn). Only k the most probable transformations
are then applied to molecule A. This yields the reactants necessary to make A, and thus complete the set of reactions R1 to Rk. For each reaction, the reaction
prediction is performed using the in-scope filter, returning a probability score. Improbable reactions are then filtered out, which leads to the list of admissible actions
and corresponding precursor positions B and C. Figure modified, with permission, from [50]. Abbreviation: ECFP4, extended-connectivity fingerprint.
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90% if the time limit is raised to 60 s. More impressively, the speed per molecule for 3N-MCTS is
20-fold faster than the traditional Monte Carlo method [50].

Reaction Yield Prediction and Insights into Reaction Mechanism
AI algorithms can not only design routes of synthesis but also can effectively predict the products
and yields of organic reactions on the basis of the molecular properties of the reactants. In the
past, predicting the outcome of complex chemical reactions has been a major challenge [53].
Quantum chemistry approaches, for example, the Hartree–Fock method, semi-empirical
methods (AM1, PM3), and density functional theory, can potentially overcome this hurdle, and
in many cases the outcome of experiments can be efficiently modeled in silico. Several studies
using AI algorithms to automatize, improve, and generalize yield prediction have recently been
published in this area [4,5,60,61], and Doyle and Dreher demonstrated that ML can be used to
predict the yields of a Buchwald–Hartwig coupling reaction [62]. This reaction synthesizes
carbon–nitrogen bonds between aryl halides and amines, using palladium as a catalyst, and
has been widely applied for the total syntheses of pharmaceuticals in which aryl amine bonds
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 599

Image of Figure 2


Trends in Pharmacological Sciences
are ubiquitous. In this case the vibrational frequencies and dipole moments calculated by quan-
tum chemistry were taken as descriptors, and the final product yields from a given set of reactants
were obtained via high-throughput experimental syntheses. The RF approach was then used to
explore the relationship between the input descriptors and product yields [53]. When using vari-
ants of the reactants, the algorithm also predicted the yields of other expected products with
promising accuracy [62].

Automation of Chemical Synthesis with AI

Digitization and Standardization of Synthesis

There are ambitious plans to exploit AI to automate chemical syntheses with minimal manual
operation. Currently established technologies, such as the ‘solid phase’ method in which the
growing polymer chain is bound to an insoluble matrix, have automated the synthesis of several
classes of compounds including peptides [63] and oligonucleotides [64]. However, these rely on
separate protocols owing to the lack of standardized digital automation methods for computer
control of chemical reactions, and no universal programming language is available for computa-
tional control of chemical operation systems [65]. The Chemputer platform [66] (Table 1) was
recently developed as a generalized standard which incorporates codified standard recipes, or
chemical codes, for molecular synthesis. The platform is operated by the Chempiler program
[66], which accepts codified synthesis procedures from a scripting language called Chemical
Assembly (ChASM), and also controls specific low-level instructions for the modules that consti-
tute the architecture of the robotic platform. ChASM uses a chemical descriptive language (ΧDL)
that explicitly and systematically compiles all the required information for a synthesis procedure
[66]. The physical modules (e.g., the source flask and the target flask) and their connections
and representations are described as a directed graph by using an open-source markup lan-
guage called GraphML [67]. With GraphML, Chempiler is able to control the robotic operations
such that users can directly run chemical syntheses without manual reconfiguration. This system
had been validated by the successful synthesis of three pharmaceutical compounds: diphenhy-
dramine hydrochloride, rufinamide, and sildenafil, without any human intervention, and with yields
and purities of products comparable with or better than those achieved manually [66]. This work
represents a step towards the full automation of bench-scale chemistry with added advantages
of increased reproducibility, safety, and accessibility of complex molecules.

Automated Sampling of Reaction Space with AI
Synthesis robots combined with AI can also be used to explore unknown reaction space.
Recently, Leroy Cronin and colleagues used a synthesis robot to perform reactions with random
substrates where the selection of substrates was expressed in the form of a vector presentation
which was taken as the input for the SVM model [68]. Using automated reaction analysis of the
sample with infrared (IR) and NMR spectroscopy, the model performed a dichotomic classifica-
tion of the reactivity of each substrate pair. The reaction database was then updated accordingly,
and a linear discriminant analysis (LDA) [69] model was trained on the chemical space to predict
the probability of the remaining reactions. LDA searches a linear combination of chemical features
that predict whether a reaction takes place or not. This iterative workflowwas found to predict the
reactivity of about 1000 reaction combinations with N80% accuracy using real-time data from a
small number of experiments [70]. When this ‘self-driving’ approach was further applied to
Suzuki–Miyaura reactions [71], the predicted reactive combinations were followed up manually
by a chemist, leading to the discovery of four previously unknown reactions. After comparison
with the reactants and products of millions of reactions, the Tanimoto similarity scores [72]
of the four previously unknown reactions were found to be in the top 10 percentile, suggesting
that these reactions are distinct from others chosen at random [70]. This approach is a key
step in the digitization of chemistry that might make real-time searching of chemical space a
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Outstanding Questions
How can AI be used to accurately pre-
dict the binding affinity of a new drug
molecule when the scaffold is different
from the available training sets?

How can AI be used to predict protein
conformation changes which can take
place at the microsecond, or even sec-
ond, timescales?

Can AI be used to predict challenging
physical properties of a new drug
molecule, such as ability to cross the
brain–blood barrier (BBB), membrane
permeability, and many others?

Can AI be used to predict new alloste-
ric sites for GPCRs, the most important
drug targets in drug discovery?
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reality, and help chemists to discover new drug candidates in a more time- and cost-effective
manner.

Conclusions and Future Perspectives
At present, many pharmaceutical companies face challenges in their drug development pro-
grams because of increased costs and reduced efficiency [73]. Many impressive AI methods
and tools have recently been developed that can make these processes more cost- and time-
efficient. An example of this is the utilization of AI/ML in drug screening. A traditional high-
throughput screening library usually contains around 1 onemillion compounds, where each com-
pound typically costs 50–100 USD. Thus, an initial screening process can cost several million
USD plus several months of work. Subsequent lead compound optimization might take several
years to identify preclinical drug candidates. By contrast, with the help of AI, a virtual compound
library of several billion molecules can be screened within a few days. It might only take a few
months to 1 year to identify preclinical candidates by using an AI-based computational pipeline
[74,75].

Given the large impact that AI-based computational approaches could have on drug develop-
ment, the number of start-ups in this area is growing rapidlyiii. Further, many pharmaceutical
companies have invested in internal AI-based R&D programs as well as in cooperation with AI
start-ups and academic institutions since 2017 [73]. An AI and ML company, Recursion Pharma-
ceuticals, in collaboration with Takeda Pharmaceutical Ltd, recently announced breakthrough
results in identifying novel preclinical compounds for rare diseases. In 1.5 years of the collabora-
tion with Recursion, Takeda identified potential drug candidates for more than 60 unique indica-
tions, and these are already in preclinical and clinical evaluationiv. The timeline of 1.5 years is much
faster than the traditional preclinical drug discovery pipeline of approximately a decade.

AI tools have also been used in multiple aspects of the drug discovery cycle ranging from drug
screening assays [7,8], predicting the physical properties, bioactivity, and toxicity of a potential
drug, to structure predictions. Traditional experimental structural biology methods usually take
several years to resolve a protein structure. By contrast, AI-based structure predictions only
take a few hours to a few days, making the process far more time-efficient. Merck has success-
fully used DL algorithms for predicting native protein folding, which can be achieved within a few
days [76]. Moreover, AI has also been used for cell image processing [1,2], physical bioactivity
and toxicity predictions [77–79], QM property predictions [47], planning chemical syntheses
[50,53,80,81], and operating a robotic system for organic synthesis [66] to further improve the
efficiency of drug discovery.

However, some aspects in the drug discovery process have not yet been well explored (see
Outstanding Questions). For instance, accurately predicting the binding affinity between a drug
molecule and target protein remains challenging [82,83]. Currently, computational methods
including AI do not perform well in this area [84–86] for several reasons.

First, because AI is a data-mining method, the amount and quality of the available data directly
affect the performance of AI models [30,34,79,87]. Successful training of DNNs relies on large
amounts of training datav,vi. The development of transfer learning technology, which learns from
one task and applies it to the other task, may be a potential approach to solving this problem.
Second, the quality of the available data is sometimes insufficient for efficient AI learningv,vi. Exper-
imental data in public databases are often not measured in the same biological assays, methods,
or conditions [88,89]. A compound measured by different methods could yield totally different
data which are not comparable with each other. Moreover, public databases may contain
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multiple, contradicting datasets. Thus, before performing specific AI tasks, filtering the raw inputs
for high-quality data is an essential step. AI itself could be a solution by also automating data
entry [90].

Third, important 3D target structure information, such as the chemical environment of the ligand-
binding site of a target protein, the conformation of drug molecule, and the flexibility of a protein,
are lost when transferring 3D atomic space to a 2D interpretation for AI calculations. As an alter-
native, molecular dynamics (MD) simulations could sample different conformations and
states for both proteins and drug molecules under physiological conditions. A recent study suc-
cessfully combined AI and MD simulations to study G protein-coupled receptor (GPCR) ligand
specificity, demonstrating the potential of this approach [91]. In addition, transferring information
from MD to AI might overcome the limitations of binding-affinity predictions as well as predicting
other molecular properties in the near future.

Finally, it is important to highlight that DL methods are still a ‘dark secret’ or ‘black box’ [74]. Dur-
ing the training stage, a neural network is only given a particular input with a label. The features are
not explicitly specified, and even the creator of the networkmay not knowwhat is being inspected
during the intermediate stages, or why the model reaches a particular conclusion [79]. To
conclude, a tremendous amount of work has been done to incorporate AI tools to expedite
the drug discovery cycle, but further successful implementations of these tools will be necessary
before the full potential of AI in drug discovery can be realized.
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